

INVENTORY OF CANADA'S MARINE RENEWABLE ENERGY RESOURCES

A. Cornett CHC-TR-041 April 2006

National Research Conseil national Council Canada de recherches Canada

INVENTORY OF CANADA'S MARINE RENEWABLE ENERGY RESOURCES

Technical Report CHC-TR-041 April 2006

A. Cornett, Ph.D., P.Eng. Canadian Hydraulics Centre National Research Council Canada Ottawa, K1A 0R6, Canada

Abstract

This report presents results of studies conducted to quantify and map Canada's renewable marine energy resources due to waves and tidal currents. These studies constitute the initial phase of a multi-year project that aims to create a digital atlas of Canadian renewable marine energy resources.

The waters off Canada's Pacific and Atlantic coasts are endowed with rich wave energy resources. The results presented herein define the scale of these resources, as well as their significant spatial and seasonal variations. The annual mean wave power along the 1,000 m isobath off Canada's Pacific coast totals roughly 37,000 MW, equivalent to over 55% of Canadian electricity consumption, while the annual mean wave power along the 1,000 m isobath off Canada's Atlantic coast sums to roughly 146,500 MW or more than double current electricity demand. The wave energy available in winter is generally four to seven times greater than in summer. It is important to recognize that due to various factors including environmental considerations, losses associated with power conversion, and socio-economic factors, only a fraction of the available wave energy resource can be extracted and converted into useful power. Even so, the Canadian resources are considered sufficient to justify further research into their development as an important source of renewable green energy for the future.

Canada is also endowed with sizeable tidal current energy resources. Compared to other renewable energy sources such as solar, winds and waves, tidal currents have the distinct advantage of being reliable and highly predictable. A total of 190 sites with potential mean power greater than 1 MW have been identified. The total mean potential power at these 190 sites exceeds 42,000 MW, equivalent to roughly 63% of current electricity demand. Classified by Province and Territory, Nunavut has by far the largest potential resource, while British Columbia has the most sites with mean power greater than 1 MW. It is important to note that, as in the case of wave energy, only a fraction of the available tidal current resource can be converted into useable energy without noticeable impact on tides and tidal flows. The effects of extracting energy from tidal currents and from ocean waves should be assessed carefully on a case-by-case basis.

This report includes several recommendations for further work, including new modelling studies of nearshore wave conditions and tidal flows in selected regions, and the creation of a web-enabled digital atlas of Canadian marine renewable energy resources.

Table of Contents

	Page
Abstract	i
Table of Contents	ii
List of Tables	iv
List of Figures	v
1. Introduction	1
1.1. Targeted Renewable Energy Technologies	2
2. Vision for a Renewable Marine Energy Resource Atlas	6
2.1. General Description of the Atlas	6
2.1.1. Ancillary Benefits and Applications	7
2.1.2. Proposed Work Plans	8
3. Inventory of Wave Energy Resources	9
3.1. General Introduction	9
3.2. Theoretical Basis for Resource Assessment	10
3.3. Direct Measurements	12
3.3.1. Analysis Methodology	12
3.3.2. Results	16
3.4. AES40 Wave Climatology	24
3.4.1. Analysis Methodology	24
3.4.2. Results	25
3.5. WAVEWATCH III Hindcasts	
3.5.1. Analysis Methodology	
3.5.2. Results	31
3.6. Inter-Comparison of Results	
3.7. Discussion of Results	41
4. Inventory of Tidal Current Energy Resources	44
4.1. General Description of Tides	44
4.2. Theoretical Basis for Resource Assessment	46
4.3. Tide Modelling	47
4.3.1. Data Sources	47
4.3.2. Analysis Methodology	

4.3.3. Results	
4.4. Site Identification and Resource Inventory	81
4.4.1. Methodology	
4.4.2. Results	83
5. Recommendations for Future Work	98
5.1. Assessment of the Wave Energy Resource	
5.2. Assessment of the Tidal Current Energy Resource	
5.3. Digital Atlas of Marine Renewable Energy Resources	
Acknowledgements	
6. References and Bibliography	
Annex A - Report of Triton Consultants	A-1

List of Tables

P	age
Table 1. Annual distribution of H_s and T_p for station C46147 (frequency in %)	13
Table 2. Variation of wave power (kW/m) with H_s and T_p for station C46147	14
Table 3. Distribution of annual wave energy by seastate (kW-hr/m) for station C46147	15
Table 4. Number of good and acceptable observations by month for Atlantic stations	17
Table 5. Number of good and acceptable observations by month for Pacific stations.	18
Table 6. Annual and monthly mean wave power for Atlantic stations (NA = not available)	19
Table 7. Annual and monthly mean wave power for Pacific stations	20
Table 8. Summary of offshore wave energy resources near Canadian waters	43
Table 9. Summary of tide models considered in this study.	49
Table 10. Mean potential tidal current energy by Province and Territory	83
Table 11. Mean potential tidal current energy by region.	84
Table 12. Tidal current power sites in southern British Columbia.	86
Table 13. Tidal current power sites in northern British Columbia	87
Table 14. Tidal current power sites in the Northwest Territories.	88
Table 15. Tidal current power sites in Nunavut.	89
Table 16. Tidal current power sites in Québec.	90
Table 17. Tidal current power sites in Newfoundland and Labrador	91
Table 18. Tidal current power sites in Nova Scotia.	92
Table 19. Tidal current power sites in Prince Edward Island.	92
Table 20. Tidal current power sites in New Brunswick.	93

List of Figures

	Page
Figure 1.	Five examples of kinetic hydraulic turbines: a) Lunar Energy; b) GCK Technology; c) MCT SeaGen; d) SMD Hydrovision TidEL; e) Verdant Power
Figure 2.	Stingray tidal stream generator prior to deployment
Figure 3.	Two examples of nearshore wave energy converters: a) Limpet OWC; b) Energetech OWC
Figure 4.	Six examples of offshore wave energy converters: a) Pelamis; b) Archimedes Wave Swing; c) IPS Buoy; d) Technocean Hose-Pump; e) Wave Dragon; f) OPT PowerBuoy
Figure 5.	Preliminary system architecture for the Ocean Energy Atlas7
Figure 6.	Influence of water depth on energy flux for selected seastates
Figure 7.	Annual distribution of H _s and T _p for station C4614714
Figure 8.	Variation in wave energy flux (wave power) with peak period and significant wave height (for station C46147 and all deep water sites)
Figure 9.	Distribution of annual wave energy with H _s and T _p for station C4614716
Figure 10	21 Annual mean wave power for sites in the NW Atlantic
Figure 11	. Annual mean wave power for sites in the NE Pacific
Figure 12	23. Seasonal variation in mean wave power for Atlantic stations
Figure 13	. Seasonal variation in mean wave power for Pacific stations
Figure 14	. Mean annual wave power derived from AES40 hindcast data. (Points denote AES40 nodes.)
Figure 15	5. Contribution to mean annual wave power in the NW Atlantic due to a) sea and b) swell. (Points denote AES40 nodes.)
Figure 16	6. Mean wave power in the NW Atlantic during a) winter; b) spring; c) summer; and d) autumn; from AES40 data
Figure 17	 Monthly cumulative probability of wave energy flux near MEDS station C44140, from AES40 data
Figure 18	8. Mean annual wave power in the NE Pacific derived from WW3-ENP hindcast data. (points denote sub-grid nodes.)
Figure 19	9. Mean wave power in the NE Pacific during a) winter and b) summer, from WW3-ENP data. (Note that different colour scales are used.)
Figure 20	 Mean annual wave power in the NW Atlantic derived from WW3-WNA hindcast data. (Points denote sub-grid nodes.)

Figure 21	. Mean wave power in the NW Atlantic during a) winter and b) summer, from WW3- NWA data. (Note that different colour scales are used.)
Figure 22	. Mean annual wave power derived from AES40 data (points) and WW3-WNA data (isolines)
Figure 23	. Comparison of mean monthly wave power from buoy measurements and wave hindcasts, station C44140
Figure 24	. Comparison of mean monthly wave power from buoy measurements and wave hindcasts, station C44139
Figure 25	. Comparison of mean monthly wave power from buoy measurements and wave hindcasts, station wel416
Figure 26	. Comparison of mean monthly wave power from buoy measurements and wave hindcasts, station C44142
Figure 27	. Comparison of mean monthly wave power from buoy measurements and wave hindcasts, station C44141
Figure 28	. Comparison of mean monthly wave power from buoy measurements and wave hindcasts, station C44138
Figure 29	. Comparison of mean monthly wave power from buoy measurements and wave hindcasts, station C44137
Figure 30	. Comparison of mean monthly wave power from buoy measurements and wave hindcasts, station C44251
Figure 31	. Comparison of mean monthly wave power from buoy measurements and WW3-ENP hindcast, station C46208
Figure 32	. Comparison of mean monthly wave power from buoy measurements and WW3-ENP hindcast, station C46004
Figure 33	. Comparison of mean monthly wave power from buoy measurements and WW3-ENP hindcast, station C46036
Figure 34	. Comparison of mean monthly wave power from buoy measurements and WW3-ENP hindcast, station C46184
Figure 35	. Comparison of mean monthly wave power from buoy measurements and WW3-ENP hindcast, station C46207
Figure 36	. Comparison of mean monthly wave power from buoy measurements and WW3-ENP hindcast, station C46147
Figure 37	. Comparison of mean monthly wave power from buoy measurements and WW3-ENP hindcast, station C4620540
Figure 38	. Comparison of mean monthly wave power from buoy measurements and WW3-ENP hindcast, station C4613240
Figure 39	. Comparison of mean monthly wave power from buoy measurements and WW3-ENP hindcast, station C46204

Figure 40. Comparison of mean monthly wave power from buoy measurements and WW3 hindcast, station C46145.	3-ENP 41
Figure 41. Tides are generated by the gravitational forcing of the moon and sun	44
Figure 42. Bathymetry and mesh for the part of the Vancouver Island model (132,022 nod partial domain shown).	les, 49
Figure 43. Bathymetry and mesh for part of the NE Pacific model (51,330 nodes, partial d shown).	omain 50
Figure 44. Bathymetry and mesh for the Arctic model (17,356 nodes)	51
Figure 45. Bathymetry and mesh for the Hudson Bay (HB1) model (45,230 nodes)	52
Figure 46. Bathymetry and mesh for the NW Atlantic model (17,055 nodes, partial domain shown).	n 53
Figure 47. Bathymetry and mesh for the Gulf of St. Lawrence (GSL1) model (7,575 nodes	s)54
Figure 48. Bathymetry and mesh for the Scotain Shelf model (5,261 nodes).	55
Figure 49. Bathymetry and mesh for the Fundy model (74,934 nodes)	56
Figure 50. a) Tide level, b) depth averaged velocity; c) depth averaged speed; and d) dept averaged power density near the centre Minas Passage over a typical 15 day cyc	h cle59
Figure 51. Cumulative distribution of a) depth averaged speed; and b) depth averaged pow density near the centre of Minas Passage	wer 60
Figure 52. a) Tide level; b) depth averaged velocity; c) depth averaged speed; d) depth av power density between Mill Island and Salisbury Island over a typical 15 day cy	eraged ycle61
Figure 53. Cumulative distribution of a) depth averaged speed and b) depth averaged pow density between Mill Island and Salisbury Island	/er 61
Figure 54. a) Tide level; b) depth averaged velocity; c) depth averaged speed; and d) dept averaged power density near Cape St. James over a typical 15 day cycle	[.] h 62
Figure 55. Cumulative distribution of a) depth averaged speed and b) depth averaged pow density near Cape St. James.	/er 63
Figure 56. Mean tide range along the BC coast (m).	63
Figure 57. Root-mean-square tidal current speed, southern Vancouver Island.	64
Figure 58. Root-mean-square tidal current speed, northern Vancouver Island	65
Figure 59. Root-mean-square tidal current speed, Queen Charlotte Islands	66
Figure 60. Mean power density, southern Vancouver Island	67
Figure 61. Mean power density, northern Vancouver Island	68
Figure 62. Mean power density, Queen Charlotte Islands.	69
Figure 63. Mean tide range in eastern Canada	70
Figure 64. Root-mean-square tidal current speed, eastern Canada.	71
Figure 65. Mean power density, eastern Canada.	72

Figure 66. Mean tide range, Bay of Fundy and Scotian Shelf (m).	73
Figure 67. Root-mean-square tidal current speed, Bay of Fundy.	74
Figure 68. Mean power density, Bay of Fundy	75
Figure 69. Mean tide range in Hudson Bay (m)	76
Figure 70. Mean tide range in the Arctic Archipelago (m)	77
Figure 71. Root-mean-square tidal current speed, Hudson Bay.	77
Figure 72. Root-mean-square tidal current speed, western Arctic	78
Figure 73. Root-mean-square tidal current speed, Hudson Bay and Hudson Strait	79
Figure 74. Mean power density, Hudson Bay and Hudson Strait.	80
Figure 75. Mean power density, Arctic	81
Figure 76. Leading tidal current power sites, Canada	94
Figure 77. Leading tidal current power sites, Pacific coast.	95
Figure 78. Leading tidal current power sites, Arctic Archipelago	96
Figure 79. Leading tidal current power sites, Atlantic coast	97

1. Introduction

Global warming, the Kyoto protocol, the depletion of conventional reserves and the rising cost of electricity generation have sparked renewed interest in renewable ocean energy within Canada and internationally. Significant advances in ocean energy converters have been made in recent years, and there is a growing realization in many countries, particularly those in Europe, that these technologies will be ready for large scale deployments within the next five to ten years. One notable Canadian example of these advances is the tidal current energy demonstration project being conducted at Race Rocks, near Victoria, B.C. by Clean Current, in collaboration with EnCana and Pearson College.¹ In spite of these recent developments, the scale and distribution of the Canadian resource was poorly defined and uncertain.

The Ocean Energy (OE) Atlas project was conceived at an industry-government roundtable on ocean renewable energy held at Vancouver during March, 2005. At this meeting, the development of a comprehensive assessment of the pan-Canadian resource was recognized as a fundamental and important step towards the development of ocean energy in Canada. Several speakers noted that the Canadian Wind Energy Atlas², launched in 2004, played a pivotal role in boosting support for Canadian wind farms. A parallel Ocean Energy Atlas would provide a similar, much needed boost to Canada's emerging ocean energy industry.

A proposal to create a Digital Atlas of Canadian Marine Renewable Energy Resources was prepared during April and May 2005 and circulated to various Federal Government Departments and Agencies for funding. A three-year project was proposed, with a heavy emphasis in the first year on resource assessment based on existing data. The study was launched in August 2005, with funding for the first year (to March 31, 2006) provided by the Technology and Innovation Research and Development Program, administered by Natural Resources Canada.

The principal aims of the Ocean Energy Atlas project are as follows.

- To quantify and map, at a regional scale, Canada's renewable ocean energy resources due to tidal currents, waves and winds.
- To make the results available to all Canadians through an interactive digital atlas internet website.

The project is being conducted by a government-industry team led by the Canadian Hydraulics Centre of the National Research Council (NRC-CHC) in collaboration with Triton Consultants the federal department of Fisheries and Oceans (DFO), the Meteorological Service of Environment Canada (MSC), Powertech Labs and the Ocean Renewable Energy Group (OREG).

The purpose of this report is to provide a synopsis of the progress to date, including the results of preliminary assessments of Canada's wave and tidal current energy resources. The study team looks forward to securing funding for the second and third years of the project, so that these assessments can be refined and the goal of creating a digital atlas of marine renewable energy resources can be fulfilled.

¹ http://www.racerocks.com/racerock/energy/tidalenergy/tidalenergy.htm

² <u>http://www.windatlas.ca/en/index.php</u>

Further information on the proposed resource atlas is presented in Chapter 2. Chapter provides a description and initial inventory of Canada's wave energy resources. Canada's tidal current energy resources are described, mapped and tallied in Chapter 4. Recommendations for further studies are presented in Chapter 5.

1.1. Targeted Renewable Energy Technologies

Tidal barrage style energy projects have been built and successfully demonstrated at several sites around the world, including Annapolis Royal, NS³. However, tidal barrages tend to alter water levels, modify tidal currents, and impact eco-systems over a wide area. These side-effects suggest that traditional tidal barrages will remain unattractive for the foreseeable future in Canada. For these reasons, the Ocean Energy Atlas project will not be considering tidal barrage style developments. Instead, the project will quantify and map the resources that may one day be exploited using three different classes of energy converters:

- devices that extract energy from tidal currents (kinetic hydropower technologies);
- devices that extract energy from surface waves (wave energy converters); and
- devices that extract energy from winds (wind turbines).

Several different classes of kinetic hydropower devices have been developed and tested in recent years including: horizontal axis turbines; vertical axis turbines; water wheels; and oscillating hydroplanes. EPRI (2005) provide a recent review of the latest technologies. In addition to extracting energy from tidal currents, some of these devices can be adapted to harvest energy from the flows in rivers and open channels. The horizontal and vertical axis turbines are similar to wind turbines, but are optimized for working in water rather than air. Five examples of kinetic hydraulic turbines are shown in Figure 1. The Stingray tidal stream generator, a leading example of an oscillating hydroplane, is shown in Figure 2. One of the main advantages of marine kinetic hydropower compared with other forms of renewable energy is that unlike wind, wave and solar resources, tidal flows are entirely predictable and reliable. This predictability and reliability makes it much easier for utilities to incorporate the energy into their supply mix.

Many different types of wave energy converters have been proposed and developed in recent years. WaveNet (2003) and EPRI (2004) provide reviews of the latest technologies. These devices generally fall into two classes: *nearshore* devices that are rigidly mounted to the sea bottom or a rocky shore, and *offshore* devices which incorporate one or more semi-buoyant or floating oscillating bodies. One class of fixed device is the oscillating water column (OWC). Several full size oscillating water column prototypes have been built around the world in recent years, including Norway (1985), Japan (1990), India (1990), Portugal (1999), UK (1997, 2000), Australia (2005). Two of these devices are shown in Figure 3. Leading examples of floating devices include the Pelamis developed in the UK, the Archimedes Wave Swing developed in the Netherlands, the Wave Dragon developed in Denmark, and the OPT PowerBuoy developed in the USA. Figure 4 shows six examples of offshore wave energy converters that have all been ocean tested.

³ Operating since 1984 with a peak output of 20 MW.

Figure 1. Five examples of kinetic hydraulic turbines: a) Lunar Energy; b) GCK Technology; c) MCT SeaGen; d) SMD Hydrovision TidEL; e) Verdant Power.

Figure 2. Stingray tidal stream generator prior to deployment.

Figure 3. Two examples of nearshore wave energy converters: a) Limpet OWC; b) Energetech OWC.

Figure 4. Six examples of offshore wave energy converters: a) Pelamis; b) Archimedes Wave Swing; c) IPS Buoy; d) Technocean Hose-Pump; e) Wave Dragon; f) OPT PowerBuoy.

Winds tend to be steadier and stronger over open water than over land. Coastal and offshore winds represent a sizeable energy resource that is already being harnessed in several European countries, including Denmark, Sweden, the Netherlands, Ireland and the UK. Renewable energy project developers are also considering ocean energy farms designed to extract energy from more than one source at a single site. For example, an offshore wind farm could be equipped with wave energy converters to extract energy from waves and winds at the same site. Extracting energy from two sources would make the energy supply steadier and less intermittent. There would also be significant reductions in development costs, as much of the infrastructure could be shared between the two technologies. To support these initiatives, the Canadian Ocean Energy Atlas will include regional information on offshore winds for Canadian waters, borrowed from the existing database of the Wind Energy Atlas.

2. Vision for a Renewable Marine Energy Resource Atlas

2.1. General Description of the Atlas

The proposed Ocean Energy Resource Atlas will feature a geo-referenced database containing tidal current, wave climate and wind data and meta-data for all Canadian waters, integrated with an interactive viewer/mapper and wrapped in a user-friendly interface. Additional layers featuring relevant climatic, environmental and socio-economic variables such as ice regime, marine parks, communities, ports and harbours, shipping lanes, and more will be included to enhance the value and utility of the Atlas to a broad and diverse community. The digital atlas will be equipped with a toolbox of statistical, temporal and spatial analysis tools for analysing and interpreting the data. The atlas will be web-enabled, like the Canadian Wind Energy Atlas, so that it can be accessed by all. The Atlas is not intended to replace the need for project developers to conduct detailed investigations of particular sites. However, the Atlas will help identify promising sites and will make it easier for others to conduct more detailed site-specific investigations.

The Atlas will help address the needs of a diverse community of users, including:

- developers of renewable ocean energy projects and technologies (for site identification);
- governments and non-governmental organizations (to help shape renewable energy policy);
- scientists and engineers (for environmental assessment and technical analysis);
- energy companies, power utilities and regulators;
- communities and municipalities;
- coastal resource managers;
- students and teachers; and
- media.

A sketch of the conceptual design for the Ocean Energy Atlas architecture is shown in Figure 5. The core of the atlas will be a geo-referenced database containing pan-Canadian information on bathymetry, wave climate, tidal flows, winds, ice regimes and more. The public will access the contents of the database through a public web interface with functionality for interactive mapping

and analysis. Users will be able to interrogate the database, perform analysis operations and create customized maps, charts and graphics. Technical users will be able to access the database contents and add new data using GIS software or through GIS-type applications such as EnSim⁴

2.1.1. Ancillary Benefits and Applications

The OE Atlas, with its geo-referenced database of met-ocean parameters, will provide ancillary benefits to several different communities of users. For the ocean energy sector, the atlas database will make it easier to apply computer models to conduct detailed site selection studies and perform detailed resource assessments for complex coastal areas. The Atlas database will also facilitate the use of computer models to study the potential environmental impacts of proposed installations. For example, a tidal model linked to the database could be used to investigate the impact of a proposed tidal current energy farm on the local and far-field tidal currents and water levels. Similarly, wave models and coastal process models linked to the database could be used to study the potential impact of a wave energy farm on neighbouring shores and coastal processes. By providing much of the required background data, the database will facilitate these kinds of studies.

Figure 5. Preliminary system architecture for the Ocean Energy Atlas.

7

⁴ EnSim software was developed at NRC-CHC as an environmental simulation toolkit for working with computer simulations of free surface flows in rivers, lakes, estuaries and oceans. EnSim creates a virtual environment where simulation results from different tide and wave models can be viewed, animated and analysed in two and three dimensions. A version of EnSim tailored specifically to the needs of the wind energy community was developed earlier this year.

2.1.2. Proposed Work Plans

As initially proposed, the OE Atlas project would have a three year duration. The main tasks for year one were:

- Review international resource assessment studies and methodologies;
- Assemble and analyse existing relevant data on tidal currents and wave conditions;
- Develop first-order estimates of provincial and national tidal stream resources;
- Develop first-order estimates of provincial and national wave energy resources;
- Develop a conceptual design of the digital OE atlas; and
- Communicate with stakeholders, disseminate interim results.

The main tasks for year two (2006/07) are as follows:

- Perform modelling studies to fill gaps and improve resource definition for nearshore waves
- Perform modelling studies to fill gaps and improve resource definition for high-velocity tidal currents
- Identify promising high-energy sites
- Complete final design of the Canadian Atlas of Renewable Ocean Energy
- Develop beta-version of the Atlas
- Communicate with stakeholders and disseminate results through technical workshops, conference presentations and papers.

The main tasks for year three (2007/08) are:

- Perform additional modelling studies to fill gaps and improve resource definition for nearshore waves.
- Perform modelling studies to fill gaps and improve resource definition for high-velocity tidal currents.
- Test and de-bug the beta-version of the Atlas
- Develop and launch the Atlas website.
- Estimate the scale of the recoverable resource and what impact its recovery might have on oceanographic processes (tides, waves, ocean circulation).
- Incorporate new data into the Atlas as it becomes available.
- Incorporate new tools for spatial and temporal analysis into the Atlas as much as possible.
- Incorporate new layers into the Atlas containing information on factors such as ice cover, surficial geology, parks and protected areas, aquaculture sites, navigation channels and routes, communities, road networks, political boundaries and the electricity grid).
- Communicate with stakeholders and disseminate results through technical workshops, conference presentations and papers.

3. Inventory of Wave Energy Resources

3.1. General Introduction

Ocean surface waves can be considered as a concentrated form of solar energy, since these waves are generated by winds produced by weather systems that form in response to the differential solar heating of the earth's surface and atmosphere. Surface waves have long been recognized as an attractive source of renewable energy.

The power or energy flux in a wave is proportional to the square of the wave height (or amplitude) and to the wave period (or wave length). Large-amplitude, long-period waves contain more power than do smaller waves with shorter periods. The wave conditions at any site are highly variable over several different time scales. Each seastate contains many individual waves featuring a wide range of wave heights, periods and directions. The resulting surface elevation and energy flux are continuous stochastic processes. The prevailing seastate can also vary on an hourly or daily basis in response to changes in local winds, the passage of storms, and the arrival of swell from distant storms. Seasonal variations in wave climate are also common, and these tend to mirror the seasonal variations in global weather patterns. For example, wave climates at higher latitudes in the northern hemisphere tend to be considerably more energetic in winter than in summer. Wave energy is unevenly distributed around the globe. Increased wave energy can be found between the latitudes of ~40° to ~60° in both hemispheres, and on the western margin of the major continents.

Global warming, the depletion of conventional energy reserves and the rising cost of electricity generation have sparked renewed interest in renewable wave energy within Canada and internationally. Significant advances in wave energy converters have been made in recent years, and there is a growing realization in many countries, particularly those in Europe, that these technologies will be ready for large scale deployments within the next five to ten years (ABP, 2004). Despite these recent developments, very little effort has been directed to quantifying and mapping wave energy resources in Canada in the past. Due to this inattention, Canada's wave energy resources remain poorly defined and uncertain.

In the late 1970's the National Research Council Canada (NRC) investigated methods to determine wave energy flux from buoy measurements (Mansard, 1978), and quantified the wave energy resource at sites near Tofino B.C. and Logy Bay Nfld. (Baird and Mogridge, 1976). During 1991-1993, Transport Canada funded the development and published a Wind and Wave Climate Atlas of Canada in four volumes, each focusing on a different geographic region. These reports presented detailed information on wind speeds, wave heights and wave periods, but no information was given on wave energy flux or power. Allievi and Bhuyan (1994) analysed data from eleven buoys for a single year (1991) to estimate wave power in deep water off the coast of British Columbia; however, their results are inconsistent with other studies. Very recently, Cornett (2005) presented results from a preliminary analysis of wave buoy measurements from over 60 sites in the NE Pacific and the NW Atlantic near Canada.

This report extends the contribution of Cornett (2005) by presenting results from a recent study in which the wave energy resource in Canada's Pacific and Atlantic waters is defined by analysing a large quantity of data obtained from three main sources:

• direct wave measurements obtained at over sixty stations;

- a wind-wave hindcast of the North Atlantic, known as the AES40 hindcast, generated using the OWI-3G model (Swail et al, 2000); and
- wind-wave hindcasts of the Northeast Pacific and Northwest Atlantic generated by the WAVEWATCH-III model (Tolman, 2002).

The main purpose of the present work is to improve the definition of wave energy resources in the NE Pacific and the NW Atlantic near Canada. Wave energy resources in the Arctic Ocean are relatively small and difficult to exploit, due in large part to the fact that these waters remain ice-covered for much of the year. Hence, this survey has focused on the wave energy resources in the Atlantic and Pacific Oceans near Canada, where the resource is both larger and can be harvested more easily. The author is not aware of any previous studies that have attempted a comprehensive assessment of wave energy resources in the NE Pacific and the NW Atlantic near Canada.

3.2. Theoretical Basis for Resource Assessment

Various methods have been proposed to estimate the wave power (P) or energy flux from field measurements of wave properties. Six methods for calculating wave power from measured data were compared by Mansard (1978), who found that some approximate methods yielded erroneous and misleading estimates. This study highlights the importance of employing a methodology that is accurate and reliable.

The energy flux or power (P) transmitted by a regular wave per unit crest width can be written as

$$P = \frac{1}{8} \rho g H^{2} C_{g} , \qquad (1)$$

where ρ is the fluid density (~1,030 kg/m³), H is the wave height, and C_g is the group velocity, defined as

$$C_{g} = \frac{1}{2} \left(1 + \frac{2kh}{\sinh(2kh)} \right) \frac{L}{T} \quad , \tag{2}$$

in which h is the local water depth, L is the wave length, T is the wave period, $k = 2\pi/L$ is the wave number and C = L/T is the wave celerity. The wave length, depth and period are related through the dispersion equation:

$$L = T \sqrt{\frac{g}{k} \tanh(kh)} \quad . \tag{3}$$

In shallow water (h < L/2), the following explicit equation for L can be used without noticeable error:

$$L = \frac{gT^2}{2\pi} \left\{ \tanh\left[\left(\frac{\omega^2 h}{g}\right)^{3/4}\right] \right\}^{2/3} .$$
(4)

In deep water (h > L/2), C = L/T = $2C_g$ and L = $L_o = gT^2/2\pi$, therefore

$$P_o = \frac{1}{32\pi} \rho g^2 H^2 T \quad \text{(regular wave in deep water)} \tag{5}$$

Real seastates are often described as a summation of a large number of regular waves having different frequencies, amplitudes and directions. The mix of amplitudes, frequencies and directions is often described by a variance spectral density function or 3D wave spectrum $S(f,\theta)$. In this case, the power transmitted per unit width can be written as

$$P = \rho g \int_0^{2\pi} \int_0^{\infty} C_g(f) S(f,\theta) df d\theta \quad , \tag{6}$$

with

$$C_g(f) = \frac{1}{2} \left[1 + \frac{2kh}{\sinh(2kh)} \right] \sqrt{\frac{g}{k} \tanh(kh)} \quad , \tag{7}$$

where k(f) is the frequency dependent wave number and h is the local water depth.

Figure 6 shows the significant dependence of energy flux on water depth for seastates with identical H_s and T_p . This figure illustrates the importance of taking the local water depth into account when computing wave energy at sites with water depths less than 200m. This figure does not illustrate the variation in energy flux as waves propagate from deep to shallow water, or vice-versa.

Figure 6. Influence of water depth on energy flux for selected seastates.

The wave power per unit width transmitted by irregular waves can be approximated as

$$P \approx \frac{\rho g}{16} H_s^2 C_g(T_e) \quad , \tag{8}$$

where T_e is known as the energy period and $C_g(T_e)$ is the group velocity of a wave with period T_e . The energy period can be defined in terms of spectral moments as

$$T_{e} = \frac{m_{-1}}{m_{0}} = \frac{\int_{0}^{\infty} f^{-1} S(f) df}{\int_{0}^{\infty} S(f) df} \quad .$$
(9)

In deep water, the approximate expression for wave power transmitted per unit width simplifies further to

$$P_o \approx \frac{\rho g^2}{64\pi} T_e H_s^2$$
 (deep water). (10)

Measured seastates are often defined in terms of significant wave height H_s and either peak period T_p or mean period T_z . The energy period T_e is rarely specified and must be estimated from other variables when the spectral shape is unknown. For example, in preparing the Atlas of UK Marine Renewable Energy Resources, it was assumed that $T_e=1.14T_z$ (ABP, 2004). Another approach when T_p is known is to assume

$$T_e = \alpha T_p \quad . \tag{11}$$

The coefficient α depends on the shape of the wave spectrum: α =0.86 for a Pierson-Moskowitz spectrum, and α increases towards unity with decreasing spectral width. In assessing the wave energy resource in southern New England, Hagerman (2001) assumed that $T_e=T_p$. In this study, we have taken the more conservative assumption that $T_e=0.9T_p$, which is equivalent to assuming a standard JONSWAP spectrum with a peak enhancement factor of γ =3.3. It is readily acknowledged that this necessary assumption introduces some uncertainty into the resulting wave power estimates, particularly when the real seastate is comprised of multiple wave systems (sea plus one or more swells approaching from different directions).

3.3. Direct Measurements

The Marine Environmental Data Services (MEDS) of the Department of Fisheries and Oceans Canada maintains an on-line archive of wave data measured in Canadian waters dating back to the early 1970's. MEDS currently acquires wave data from several sources, including:

- buoys operated by the Meteorological Service of Canada (MSC);
- selected buoys operated by the U.S. National Data Buoy Center (NDBC); and
- data submitted by researchers, universities, regional institutes and the oil and gas industry.

MEDS databases contain over 8 million observed wave spectra from roughly 500 locations in the Canadian area of interest. However, many of the stations are located in inland waters or contain data for relatively short periods. Wave measurements obtained mainly by wave buoys at 68 stations (38 stations in the Atlantic, 30 stations in the Pacific) have been analysed to determine the monthly, seasonal and annual wave energy regime at each site. All available sites with over 300 good days of record were selected for this analysis.

3.3.1. Analysis Methodology

The measured seastates are described in terms of a characteristic wave height H_s (derived from the spectral moment) and a peak wave period T_p . Only observations classified by MEDS as "good" or "acceptable" were considered in the analysis. A program was written to determine the

frequency of occurrence for 110 different combinations of H_s and T_p . The energy flux for each seastate bin was computed using the central values of H_s and T_p in equation (8) presented previously. In these calculations, the influence of water depth on group velocity and energy flux was taken into account, and the energy period for each seastate was computed as $T_e=0.9T_p$. The total energy flux at each site was obtained by summing the contributions from all 110 bins, weighted by the appropriate frequency of occurrence. Computations were performed to determine the mean wave power at each station for every month and for a typical year.

Data for Station C46147 (South Moresby) located in 2,000m water depth near South Moresby Island at longitude -131.20°, latitude 51.82°, will be used to illustrate this procedure. For this station, the MEDS archive contains 94,035 good or acceptable observations spread over 4,091 days (over 11 years). The good observations are also fairly evenly distributed by month, so that all seasons are well represented in the dataset. Table 1 shows the annual wave climate at station C46147, expressed in terms of the frequency of occurrence (in %) for 110 combinations of H_s and T_p. The annual distributions of H_s and T_p are presented graphically in Figure 7. The wave power for each seastate bin, $P(H_s,T_p)$, computed using the central values of H_s and T_p in equation (10), are shown in Table 2, and plotted in Figure 8. This power surface applies to station C46147 and all other deep water sites. The power surface in shallow water is modified according to equation (8). The annual distribution of wave energy (kW-hr/m) with H_s and T_p for station C46147 is shown in Table 3, and presented graphically in Figure 9. The annual mean wave power for this site is obtained by dividing the total annual energy by the number of hours in a year (8,766), which in this case is 429,526/8,766 or 49.0 kW/m.

T _p (s)	0 - 3	3 - 6	6 - 9	9 - 12	12 - 15	15 - 18	18 - 21	21 - 24	24 - 27	27 – 30	>30	All
H _s (m)												
>10	0.00	0.00	0.00	0.00	0.04	0.04	0.00	0.00	0.00	0.00	0.00	0.07
9 – 10	0.00	0.00	0.00	0.01	0.07	0.04	0.00	0.00	0.00	0.00	0.00	0.12
8 – 9	0.00	0.00	0.00	0.05	0.17	0.09	0.01	0.00	0.00	0.00	0.00	0.32
7 – 8	0.00	0.00	0.00	0.22	0.43	0.20	0.03	0.00	0.00	0.00	0.00	0.88
6 – 7	0.00	0.00	0.01	0.67	0.92	0.41	0.06	0.01	0.00	0.00	0.00	2.07
5 – 6	0.00	0.00	0.15	1.73	1.77	0.65	0.08	0.01	0.00	0.00	0.00	4.40
4 – 5	0.00	0.00	0.66	3.83	3.09	0.92	0.11	0.01	0.00	0.00	0.00	8.61
3 – 4	0.00	0.00	2.34	7.80	4.89	1.33	0.24	0.01	0.00	0.00	0.00	16.61
2 – 3	0.00	0.17	6.40	11.91	4.71	1.25	0.32	0.04	0.00	0.00	0.00	24.80
1 – 2	0.00	1.52	13.80	10.64	4.36	4.49	0.78	0.05	0.00	0.00	0.00	35.65
0 – 1	0.00	0.21	1.63	0.74	1.96	1.69	0.19	0.04	0.01	0.00	0.00	6.47
All	0.00	1.90	25.00	37.59	22.40	11.10	1.82	0.17	0.01	0.01	0.00	

Table 1. Annual distribution of H_s and T_p for station C46147 (frequency in %).

Figure 7. Annual distribution of H_s and T_p for station C46147.

T _p (s)	0 - 3	3 - 6	6 - 9	9 - 12	12 - 15	15 - 18	18 - 21	21 - 24	24 - 27	27 – 30	>30	All
H _s (m)												
>10	73	219	365	511	657	803	948	1094	1240	1386		
9 – 10	60	179	299	418	538	657	776	896	1015	1135		
8 – 9	48	143	239	335	430	526	622	717	813	908		
7 – 8	37	112	186	261	335	409	484	558	633	707		
6 – 7	28	84	140	196	252	308	363	419	475	531		
5 – 6	20	60	100	140	180	220	260	300	340	380		
4 – 5	13	40	67	94	121	147	174	201	228	255		
3 – 4	8	24	41	57	73	89	105	122	138	154		
2 – 3	4	12	21	29	37	45	54	62	70	79		
1 – 2	1	4	7	10	13	16	19	22	25	28		
0 – 1	0	0	1	1	1	2	2	2	3	3		
All												

Table 2. Variation of wave power (kW/m) with H_s and T_p for station C46147.

Figure 8. Variation in wave energy flux (wave power) with peak period and significant wave height (for all deep water sites including station C46147).

T _p (s)	0 - 3	3 - 6	6 - 9	9 - 12	12 - 15	15 - 18	18 - 21	21 - 24	24 - 27	27 – 30	>30	All
H _s (m)												
>10	0	0	0	46	2030	2481	86	0	0	0	0	4,643
9 – 10	0	0	0	380	3176	2508	212	0	0	0	0	6,276
8 – 9	0	0	0	1582	6259	4112	339	0	0	0	0	12,292
7 – 8	0	0	0	4974	12745	7259	1144	102	0	0	0	26,223
6 – 7	0	0	165	11431	20245	10945	1817	267	0	0	0	44,871
5 – 6	0	0	1347	21279	28007	12521	1774	273	0	0	0	65,201
4 – 5	0	0	3898	31466	32650	11833	1631	201	0	0	0	81,679
3 – 4	0	4	8296	38775	31289	10388	2251	133	0	0	0	91,137
2 – 3	0	183	11600	30224	15380	4982	1525	214	0	0	0	64,107
1 – 2	0	596	9005	9725	5122	6452	1318	95	0	8	0	32,321
0 – 1	0	9	118	75	255	270	36	9	2	1	0	776
All	0	792	34430	149957	157157	73750	12135	1294	2	9	0	429,526

Table 3. Distribution of annual wave energy by seastate (kW-hr/m) for station C46147.

Figure 9. Distribution of annual wave energy with H_s and T_p for station C46147.

3.3.2. Results

Table 4 and Table 5 show the number of good and acceptable observations by month for all Atlantic and Pacific stations. The number of observations (related to the period of record) and their distribution throughout the year will have a direct impact on the accuracy and reliability of any wave power predictions. The most accurate and reliable predictions apply to stations with a large number of observations for every month of the year. It is important to note that the wave power predictions become less reliable as the number of monthly observations decreases.

The annual and monthly mean wave power for all east coast stations is presented in Table 6, while results for the west coast stations are shown in Table 7. The annual mean wave power results are also mapped in Figure 10 and Figure 11.

				Nun	nber of	f good	and a	ccepta	ble ob	servat	ions				
Station ID	Station Name	Long	Lat	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
WEL407	HIBERNIA-MIROS	-48.78	46.75	3888	4022	2535	4121	4244	4229	4225	4281	3969	3560	4246	4364
C44141	Laurentian Fan	-56.13	42.12	6769	5798	6190	5262	5727	6303	6846	7194	6202	7173	7256	6671
C44138	SW Grand Banks	-53.62	44.25	4218	3079	3412	3862	5022	4744	4743	5644	3629	4693	5091	5639
C44140	Tail of the Bank	-50.61	42.73	5270	4739	5103	4560	4211	4675	5448	5385	5424	7171	6244	5386
C44137	East Scotian Slope	-61.35	41.32	6355	5654	5229	4928	5180	5272	5785	5768	5453	6471	6787	6795
C44139	Banquereau	-57.35	44.32	4055	2945	2946	2544	4136	4295	4375	4181	5120	6261	5829	5363
meds189	Glomar Labrador I	-58.35	44.44	1121	715	1123	1005	425	311	313	269	316	266	454	544
meds016	Torbay	-52.47	47.64	9652	2903	1554	205	223	2578	9180	12601	13377	15936	15658	14001
C44142	La Have Bank	-64.2	42.49	4861	4967	5386	4597	5503	5284	6465	6500	5494	5766	5528	5678
WEL437	Terra Nova L-98	-48.43	46.48	1486	1239	1117	1920	1482	1438	1474	1065	1104	0	101	1484
C44251	Nickerson Bank	-53.39	46.44	3209	2516	2609	2631	2749	2291	2200	1999	1514	2007	2844	2818
WEL416	COPAN 1993	-60.6	43.85	6491	4914	5265	4343	5150	5329	5168	4606	5301	5884	6647	6229
WEL411	Terra Nova G-90	-48.47	46.49	1480	1403	2897	2850	2846	2556	3215	4748	1376	2291	1937	1442
C44131	Gannet Rock	-51	45.9	1127	858	0	0	0	0	175	682	606	503	508	938
meds298	Rowan Gorilla III	-60.73	43.81	1710	1373	1478	1395	1734	1886	1366	942	1174	1473	1773	1939
meds142	Rowan Juneau	-59.54	44.03	333	765	942	691	719	860	776	658	919	1025	800	839
meds037	Osborne Head	-63.46	44.54	19569	18143	18539	17088	19101	17580	16369	15529	14723	18742	19462	20565
C44153	Hibernia	-63.33	47.37	0	238	249	0	48	500	760	809	835	952	794	164
meds031	Western Head	-64.6	44.01	663	523	587	546	459	431	264	349	624	742	501	679
C44258	Halifax Harbour	-63.4	44.5	1690	1979	2653	3231	3577	3045	3317	3054	3006	3054	2634	2957
meds032	Cape Roseway	-65.2	43.52	395	279	300	390	465	386	480	485	447	463	237	365
C44255	NE Burgeo Bank	-57.35	47.28	2155	1662	1679	1508	1249	1699	1984	2120	2579	2877	2869	2204
meds043	Magdalen (Outer)	-61.3	47.6	0	0	0	0	64	258	859	858	826	665	600	243
meds048	Magdalen (Inner)	-61.52	47.63	0	0	0	0	0	18	509	634	607	597	533	41
meds151	Rolls Cove	-52.69	47.57	233	131	173	152	197	217	250	198	221	226	215	204
meds028	Gabarus Bay (Inner)	-60.07	45.82	236	79	0	17	232	292	430	448	262	401	465	436
meds318	Port-Aux-Basques Inn	-59.13	47.57	990	0	0	0	530	251	2113	2956	2763	2884	2848	2654
meds143	Saulnierville	-66.17	44.26	446	324	388	222	256	402	487	422	407	345	380	367
meds040	Tiner Point	-66.2	45.13	186	199	399	402	398	234	223	246	218	226	227	212
C44150	Point Sapin	-64.64	46.85	0	0	0	0	646	1272	1793	1764	1035	1367	1241	546
meds260	Ste Flavie Inner (K)	-68.17	48.64	0	0	0	0	114	286	482	480	476	472	187	0
meds152	Point Sapin	-64.68	46.99	0	0	0	0	396	514	547	542	559	549	315	22
meds045	Fox River A	-64.38	49.01	0	0	0	0	217	462	366	422	394	343	273	27
meds042	Cape Tormentine	-63.77	46.14	0	0	0	0	0	132	384	468	426	495	271	0
meds149	Lunenberg (WB)	-64.29	44.35	228	151	218	221	194	216	202	173	223	190	207	139
meds027	Minas Basin	-64.15	45.29	0	0	0	128	239	196	441	371	405	389	296	2
meds310	St-Bride's Outer	-54.18	46.92	393	477	235	10	339	439	533	484	580	645	496	444
meds299	Bay de Verde Inner	-52.9	48.08	584	198	85	0	246	377	343	516	294	303	591	890
meds051	Sept Iles	-66.38	50.2	0	0	0	12	207	327	332	197	208	391	388	197

Table 4. Number of good and acceptable observations by month for Atlantic stations.

			Number of good and acceptable observations												
Station ID	Station Name	Long	Lat	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
C46004	Middle Nomad	-135.87	50.94	8155	7426	8375	7695	9147	9034	9598	9744	8583	9584	8283	8180
C46036	South Nomad	-133.86	48.3	9212	8469	9764	9428	10726	10886	11147	10521	10037	11677	11194	10464
meds503w	Queen Charlotte	-129.97	51.3	741	545	322	211	345	450	585	551	642	812	788	774
C46184	North Nomad	-138.76	53.96	10255	9078	9932	9728	10317	10396	11182	10267	9289	11072	10521	10310
C46207	East Dellwood	-129.91	50.86	8895	8898	9847	9290	9132	8668	8438	8559	8188	9699	9585	9181
C46147	South Moresby	-131.2	51.82	7799	7073	7664	7100	7880	8475	9209	9100	7504	7587	7283	7361
meds211	Langara West	-133.32	54.45	2529	2235	1958	1513	622	254	1030	1227	1063	1177	792	2084
C46208	West Moresby	-132.7	52.5	8610	8191	8875	8489	8769	9889	10198	10051	8322	9513	9082	8779
C46205	West Dixon Entrance	-133.4	54.3	7923	7485	9405	9355	9623	9537	9975	9866	7975	9111	8139	8720
meds226	Cape Scott	-128.91	50.77	900	344	273	330	120	114	88	248	239	313	289	316
C46132	South Brooks	-127.92	49.73	6323	6628	7583	7437	7436	6890	6295	7084	6516	7503	7077	6077
meds103	Tofino	-125.74	48.99	4395	5212	5911	5764	6210	6417	5287	4924	4678	4833	4589	5425
C46204	West Sea Otter	-128.74	51.38	8357	7675	9139	9196	8264	7303	7321	7557	7961	9346	7888	8314
C46185	South Hecate Strait	-129.8	52.42	8476	7909	8987	7694	7670	7767	8010	7587	7536	8525	7721	7903
meds502w	Hecate Strait	-130.33	52.2	374	454	733	548	460	445	596	494	573	712	562	293
C46145	Central Dixon Entran	-132.43	54.38	9238	8371	9636	8580	8797	9655	10297	10395	8897	8974	9125	9299
meds213	Bonilla Island	-130.72	53.32	3471	3272	3741	2313	2256	1819	2775	3296	3117	2269	2900	3659
C46183	North Hecate Strait	-131.14	53.57	8177	7976	8561	7770	8216	8151	8238	8230	6977	7940	8388	7750
C46131	Sentry Shoal	-124.99	49.91	6131	6114	6825	6855	6294	6203	6791	6714	6439	6356	6549	6403
meds108	Roberts Bank	-123.27	49.02	241	348	427	121	251	399	438	342	397	472	237	240
meds102	Sturgeon Bank	-123.31	49.17	428	557	688	413	416	307	458	333	177	172	302	338
C46146	Halibut Bank	-123.73	49.34	5987	5911	6972	6863	6996	6316	6904	6978	6404	6720	6539	6865
meds122	Point Grey	-123.27	49.28	182	149	206	203	85	170	367	142	205	212	171	157
meds106	West Vancouver	-123.23	49.35	838	805	553	387	373	212	245	244	236	244	233	514
meds123	Fishermans Cove (WB)	-123.7	49.35	246	213	209	171	244	228	221	237	211	240	206	234
C46181	Nanakwa Shoal	-128.84	53.82	4902	4060	4752	4689	5179	4544	4176	4447	5068	5438	5554	5169
meds317	Esquimalt Harbour	-123.45	48.43	1509	874	975	1440	1430	1252	1478	1488	1329	1259	2640	2687
meds124	Fishermans Cove (K)	-123.27	49.35	200	204	225	138	200	238	248	248	165	67	201	201
C46134	Pat Bay Test Buoy	-123.45	48.66	1482	1348	1961	1888	1949	2291	1536	1364	1057	1137	1425	1311
meds121	Gibsons Landing	-123.5	49.4	188	214	240	257	247	207	247	231	230	238	236	245

Table 5. Number of good and acceptable observations by month for Pacific stations.

							Me	ean V	Vave	Pow	er (k	W/m)			
Station ID	Station Name	Long	Lat	Annual	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
WEL407	HIBERNIA-MIROS	-48.78	46.75	45.1	98.8	47.1	34.2	47.3	22.4	14.8	10.9	11.7	45.9	74.0	52.2	83.4
C44141	Laurentian Fan	-56.13	42.12	44.2	79.6	72.6	66.3	45.3	24.4	14.6	12.3	12.7	25.9	41.0	54.6	83.4
C44138	SW Grand Banks	-53.62	44.25	43.4	79.8	62.3	64.4	38.8	18.6	12.2	9.8	12.6	20.0	42.8	64.7	85.4
C44140	Tail of the Bank	-50.61	42.73	42.2	84.8	68.1	59.4	32.6	18.5	15.1	11.4	10.2	23.9	39.7	60.5	72.4
C44137	East Scotian Slope	-61.35	41.32	36.7	60.7	57.6	57.6	26.4	21.0	10.9	9.8	12.1	20.5	35.8	47.4	65.2
C44139	Banquereau	-57.35	44.32	34.1	61.8	55.7	56.0	28.5	16.0	10.3	8.2	12.1	19.1	35.8	44.0	60.0
meds189	Glomar Labrador I	-58.35	44.44	30.5	46.5	37.4	43.2	32.6	15.4	13.8	8.4	6.1	13.0	38.8	39.5	55.4
meds016	Torbay	-52.47	47.64	28.9	48.4	33.5	51.2	33.7	16.0	9.3	7.4	9.5	20.6	32.2	37.9	54.8
C44142	La Have Bank	-64.2	42.49	25.8	45.0	42.0	40.5	22.7	13.8	8.3	6.8	8.8	16.1	23.9	38.6	50.6
WEL437	Terra Nova L-98	-48.43	46.48	24.3	40.8	37.6	30.5	25.7	18.4	13.5	8.9	8.5	16.9	NA	37.3	37.5
C44251	Nickerson Bank	-53.39	46.44	24.0	38.5	39.0	34.9	17.0	11.6	5.8	7.4	6.7	13.1	24.8	27.5	43.8
WEL416	COPAN 1993	-60.6	43.85	22.4	50.2	33.8	34.0	19.7	12.2	6.2	6.1	9.3	14.6	20.6	27.5	43.9
WEL411	Terra Nova G-90	-48.47	46.49	22.0	35.0	35.4	31.0	25.6	17.1	10.6	9.2	11.9	16.1	25.8	30.4	42.2
C44131	Gannet Rock	-51	45.9	21.9	36.8	37.4	NA	NA	NA	NA	1.6	1.5	12.2	8.7	5.6	28.1
meds298	Rowan Gorilla III	-60.73	43.81	20.3	48.1	30.0	32.5	19.3	11.9	7.0	5.8	6.1	7.3	20.0	24.6	40.2
meds142	Rowan Juneau	-59.54	44.03	20.2	37.5	31.4	30.6	24.8	9.1	9.0	7.1	5.2	12.6	17.1	35.9	34.5
meds037	Osborne Head	-63.46	44.54	11.6	20.2	18.8	17.8	12.6	7.0	5.9	4.3	4.4	7.0	10.0	13.3	18.0
C44153	Hibernia	-63.33	47.37	11.1	NA	66.9	58.0	NA	1.3	1.4	1.4	5.7	5.0	8.1	11.7	23.5
meds031	Western Head	-64.6	44.01	10.4	10.3	22.6	16.4	12.1	6.5	3.2	3.1	4.7	4.0	8.5	14.3	13.0
C44258	Halifax Harbour	-63.4	44.5	9.0	12.7	12.4	14.1	10.4	7.1	4.4	4.0	3.3	5.7	11.0	10.3	16.7
meds032	Cape Roseway	-65.2	43.52	8.5	10.9	16.9	19.0	9.3	8.0	3.8	3.9	5.6	4.4	7.0	10.8	10.9
C44255	NE Burgeo Bank	-57.35	47.28	8.3	6.6	12.7	18.1	13.5	7.8	5.0	5.3	3.4	4.1	8.7	9.3	8.3
meds043	Magdalen (Outer)	-61.3	47.6	6.2	NA	NA	NA	NA	10.1	1.4	2.8	3.2	4.6	9.3	10.3	19.9
meds048	Magdalen (Inner)	-61.52	47.63	4.8	NA	NA	NA	NA	NA	0.5	1.3	2.0	5.0	6.7	8.7	9.4
meds151	Rolls Cove	-52.69	47.57	3.6	4.3	1.8	7.2	2.4	0.9	1.0	1.1	0.6	2.9	2.8	13.9	2.9
meds028	Gabarus Bay (Inner)	-60.07	45.82	3.4	5.4	6.0	NA	0.8	1.7	1.1	1.3	1.6	2.6	2.1	4.4	9.3
meds318	Port-Aux-Basques Inn	-59.13	47.57	3.4	4.8	NA	NA	NA	9.0	2.4	1.3	1.0	2.7	3.4	3.9	6.6
meds143	Saulnierville	-66.17	44.26	2.6	6.6	2.1	4.4	1.9	1.5	0.6	0.6	0.4	0.9	2.5	3.2	5.7
meds040	Tiner Point	-66.2	45.13	2.5	7.0	1.3	2.9	2.1	1.2	0.8	1.1	0.6	0.8	3.6	3.9	6.2
C44150	Point Sapin	-64.64	46.85	2.4	NA	NA	NA	NA	11.0	0.6	0.4	0.5	2.0	3.2	3.7	4.6
meds260	Ste Flavie Inner (K)	-68.17	48.64	1.4	NA	NA	NA	NA	0.6	0.6	0.4	0.8	1.4	1.8	6.1	NA
meds152	Point Sapin	-64.68	46.99	1.4	NA	NA	NA	NA	1.4	0.7	1.2	0.7	1.0	2.7	2.5	0.6
meds045	Fox River A	-64.38	49.01	1.0	NA	NA	NA	NA	1.0	1.0	0.5	0.6	0.6	1.5	1.5	3.8
meds042	Cape Tormentine	-63.77	46.14	0.4	NA	NA	NA	NA	NA	0.3	0.2	0.2	0.3	0.7	0.7	NA
meds149	Lunenberg (WB)	-64.29	44.35	0.3	0.8	0.2	0.5	0.3	0.2	0.1	0.1	0.1	0.1	0.2	0.2	0.4
meds027	Minas Basin	-64.15	45.29	0.3	NA	NA	NA	0.1	0.3	0.2	0.1	0.1	0.2	0.4	0.8	0.5
meds310	St-Bride's Outer	-54.18	46.92	0.2	0.8	0.2	0.2	0.1	0.0	0.1	0.1	0.1	0.0	0.2	0.3	0.6
meds299	Bay de Verde Inner	-52.9	48.08	0.2	0.2	1.4	0.1	NA	0.1	0.1	0.1	0.0	0.0	0.2	0.1	0.2
meds051	Sept Iles	-66.38	50.2	0.1	NA	NA	NA	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.2

Table 6. Annual and monthly mean wave power for Atlantic stations (NA = not available).

				Mean Wave Power (kW/m)												
Station ID	Station Name	Long	Lat	Annual	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
C46004	Middle Nomad	-135.87	50.94	53.8	89.4	80.4	64.8	51.0	27.0	17.9	11.1	14.8	33.3	64.9	96.8	113.8
C46036	South Nomad	-133.86	48.3	53.3	90.8	79.2	73.8	50.7	26.6	19.6	11.3	15.0	27.2	59.2	86.8	107.1
meds503w	Queen Charlotte	-129.97	51.3	52.9	103.4	73.8	57.6	72.9	25.3	22.7	10.5	10.5	22.3	35.9	83.9	85.8
C46184	North Nomad	-138.76	53.96	50.9	79.6	73.0	62.5	44.6	22.7	16.8	10.3	14.7	35.3	62.6	84.9	103.3
C46207	East Dellwood	-129.91	50.86	49.0	82.4	75.3	59.9	39.3	22.1	16.1	9.9	11.4	23.9	56.7	77.4	100.5
C46147	South Moresby	-131.2	51.82	49.0	79.4	82.3	64.9	42.1	21.8	16.9	10.1	11.8	26.3	63.1	79.1	101.0
meds211	Langara West	-133.32	54.45	45.7	106.2	101.3	55.9	48.7	20.7	12.3	7.8	9.6	21.0	37.7	63.3	72.3
C46208	West Moresby	-132.7	52.5	44.7	72.8	69.7	56.6	39.1	22.8	16.2	9.7	12.8	25.8	56.0	73.0	95.8
C46205	West Dixon Entrance	-133.4	54.3	43.6	73.0	57.6	53.1	40.0	23.3	15.3	9.5	13.3	28.2	53.5	81.2	91.0
meds226	Cape Scott	-128.91	50.77	43.3	101.1	53.9	49.9	54.4	22.4	11.7	7.2	13.5	15.4	55.7	29.3	53.0
C46132	South Brooks	-127.92	49.73	43.3	71.7	71.8	60.0	35.8	19.4	15.1	9.0	9.8	21.4	51.2	67.0	87.1
meds103	Tofino	-125.74	48.99	31.9	58.2	53.5	45.6	32.5	18.6	12.4	7.8	8.3	13.7	34.2	52.2	55.7
C46204	West Sea Otter	-128.74	51.38	30.7	51.8	41.6	39.7	25.5	14.7	10.6	6.7	7.7	15.4	35.9	48.8	61.2
C46185	South Hecate Strait	-129.8	52.42	23.0	42.8	34.1	27.3	20.6	11.8	7.9	5.4	5.9	10.5	23.0	36.4	47.0
meds502w	Hecate Strait	-130.33	52.2	18.2	31.7	20.4	32.3	21.8	10.3	10.6	4.9	4.1	7.9	18.3	33.0	21.2
C46145	Central Dixon Entranc	-132.43	54.38	17.7	22.2	26.0	24.0	14.5	8.2	5.0	3.4	4.8	12.7	22.0	30.7	41.7
meds213	Bonilla Island	-130.72	53.32	12.1	23.2	13.9	16.4	14.4	7.7	4.8	3.2	2.6	4.9	10.1	24.4	17.6
C46183	North Hecate Strait	-131.14	53.57	11.2	21.3	16.9	13.0	10.4	5.0	3.0	2.3	3.5	5.3	11.5	17.9	24.0
C46131	Sentry Shoal	-124.99	49.91	0.6	0.8	0.5	0.8	0.6	0.2	0.2	0.1	0.1	0.2	0.7	1.1	1.2
meds108	Roberts Bank	-123.27	49.02	0.4	0.2	0.5	0.6	0.4	0.4	0.6	0.2	0.2	0.2	0.4	0.5	0.5
meds102	Sturgeon Bank	-123.31	49.17	0.4	0.3	0.4	0.5	0.5	0.3	0.4	0.2	0.2	0.2	0.3	0.4	0.4
C46146	Halibut Bank	-123.73	49.34	0.3	0.3	0.2	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.4	0.6
meds122	Point Grey	-123.27	49.28	0.2	0.1	0.1	0.2	0.1	0.1	0.2	0.1	0.1	0.1	0.2	0.2	0.3
meds106	West Vancouver	-123.23	49.35	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1
meds123	Fishermans Cove (WB)	-123.7	49.35	0.1	0.1	0.0	0.1	0.1	0.0	0.1	0.0	0.0	0.0	0.1	0.0	0.1
C46181	Nanakwa Shoal	-128.84	53.82	0.0	0.2	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1
meds317	Esquimalt Harbour	-123.45	48.43	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
meds124	Fishermans Cove (K)	-123.27	49.35	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C46134	Pat Bay Test Buoy	-123.45	48.66	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
meds121	Gibsons Landing	-123.5	49.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table 7. Annual and monthly mean wave power for Pacific stations.

Many stations on both coasts are located in sheltered inshore locations with relatively mild wave climates. However, there are also a good number of stations in exposed sites featuring energetic wave climates. These results indicate that the mean annual wave energy flux at exposed sites in deep water off the B.C. coast is typically in the range of 45 to 55 kW/m, while the mean wave power available near the western shores of the Queen Charlotte Islands and Vancouver Island is on the order of 30 to 45 kW/m. On the Grand Banks east of Newfoundland, the mean annual wave energy flux is in the range of 42 to 45 kW/m, while the mean wave power available near the SE coast of Newfoundland is on the order of 25 to 30 kW/m. Annual mean wave power values around 20 to 25 kW/m seem representative for the waters near Sable Island, while values near 10 kW/m are representative of conditions along the southern shore of Nova Scotia.

As noted previously, the wave power along a coast can vary considerably due to sheltering and bathymetric effects such as wave diffraction and refraction. Hence, there likely will be pronounced local variations in wave conditions and energy potential close to shore. Clearly, these local variations cannot be identified and are beyond the scope of the present analysis.

Figure 10. Annual mean wave power for sites in the NW Atlantic.

Figure 11. Annual mean wave power for sites in the NE Pacific.

These results indicate a strong seasonal variation in the wave energy available along both coasts. The monthly variation in mean wave power for nineteen stations in the Atlantic and eighteen stations in the Pacific are plotted in Figure 12 and Figure 13. In these figures, the monthly mean power for each station has been normalized by the annual mean power for that station, so that a value of 2 indicates a monthly mean power that is double the annual mean value. In the NW Atlantic (see Figure 12), the mean wave power in winter (December - February) is roughly four or five times larger than in summer (June - August). On the B.C coast (see Figure 13), the mean wave power in winter is approximately six or seven times greater than in summer.

Figure 12. Seasonal variation in mean wave power for Atlantic stations.

Figure 13. Seasonal variation in mean wave power for Pacific stations.

3.4. AES40 Wave Climatology

The AES40 wind and wave climatology was developed by the firm Oceanweather Inc. for the Climate Research Branch of Environment Canada (Swail et al., 1998). The climatology was developed by applying the 3rd generation wave model OWI-3G to predict the wave fields in the North Atlantic over a continuous 40 year period, going back to 1958. (The hindcast period has since been extended to 50 years.) The historical wind fields used to drive the model were derived by synthesizing data from a number of sources, including wind fields developed by the NCEP-NCAR Reanalysis Project and a kinematic reanalysis of all major storms.

The AES40 wave hindcast was performed on a 0.625° by 0.833° grid containing 9,023 nodes spanning the North Atlantic between latitudes 0° and 75° N and longitudes 82° W to 20° E. This domain extends northwards past the northern tip of Baffin Island and includes all Canadian waters in the North Atlantic. The influence of ice cover was included using ice cover charts updated monthly. The 5/10 ice concentration contour was used to define the ice edge – points with ice concentrations greater than 5/10 were considered as land by the model.

The resulting wave climatology has been well validated and has been widely used in wave climate and engineering studies for the North Atlantic, particularly in the region offshore the east coast of Canada (Swail et al., 2000). The AES40 hindcast appears to provide a good description of the wave climate at exposed deep water sites. However, because the grid is relatively coarse and the wave model did not include shallow water effects, the model is not well suited to predicting wave climatology close to land or in smaller partially enclosed water bodies such as the Bay of Fundy, Northumberland Strait, the Strait of Belle Isle or the Gulf of St. Lawrence. Predictions for these areas should be approached with caution.

3.4.1. Analysis Methodology

AES40 hindcast results for all 9,032 grid points were obtained from MSC for a five year period between January 1997 and December 2001. Seventeen variables were available at each node, including:

- mean 10m wind speed and direction
- peak period, variance and vector mean direction of the total spectrum (including sea and swell)
- peak period, variance and vector mean direction of the primary part of the spectrum (the sea)
- peak period, variance and vector mean direction of the secondary part of the spectrum (the swell)

The first three years of data were computed at a 6-hour interval, while a 3-hour interval was used in the final two years. A 1,415-point subset of the original grid containing all nodes north of 38°N and west of -42°W was retained for analysis. The following derived variables were computed for all time steps at each node of the sub-grid.

- significant wave height for the sea, swell and total seastate,
- wave energy flux for the sea, swell and total seastate (equation (8) with $T_e=0.9T_p$),
- the mean wave period, and
- the wind power density.
Next, the five years of data were grouped to form datasets describing conditions annually and during each month (January to December) and season (winter, spring, summer and autumn). winter was defined from December to February, spring from March to May, summer from June to August, and autumn from September to November. Finally, for every combination of variable, month and season, a set of simple statistics was computed to describe conditions at every node in the sub-grid. These statistics included the minimum, maximum, mean, standard deviation and root-mean-square values, plus the values corresponding to cumulative probabilities of 10%, 25%, 50%, 75% and 90%.

3.4.2. Results

Figure 14 shows the mean annual wave power derived from the AES40 data. The contributions to annual mean wave power due to sea and swell are compared in Figure 15. It is interesting to note that roughly half of the annual wave energy along the exposed coasts or Newfoundland and Nova Scotia is due to swells arriving from distant storms. The mean wave power in winter (December - February), spring (March – May), summer (June – August) and autumn (September – November) are compared in Figure 16.

The probability distribution of energy flux (wave power) at the node nearest to MEDS station C44140 for the months of January, April, July, and October are compared in Figure 17. In January the energy flux varies between 10 and 500 kW/m, while the energy flux during July varies between 2 and 60 kW/m. The median energy fluxes (the value exceeded 50% of the time) in January and July are 55 and 9 kW/m, respectively

Figure 14. Mean annual wave power derived from AES40 hindcast data. (Points denote AES40 nodes.)

Figure 15. Contribution to mean annual wave power in the NW Atlantic due to a) sea and b) swell. (Points denote AES40 nodes.)

Figure 16. Mean wave power in the NW Atlantic during a) winter; b) spring; c) summer; and d) autumn; from AES40 data.

Figure 17. Monthly cumulative probability of wave energy flux near MEDS station C44140, from AES40 data.

3.5. WAVEWATCH III Hindcasts

The Marine Modeling and Analysis Branch (MMAB) of the U.S. National Oceanic and Atmospheric Administration (NOAA) performs continuous operational forecasts of the ocean wave climate around the globe. The wave predictions are performed using a sophisticated third generation spectral wind-wave model known as WAVEWATCH III or WW3 (Tolman, 2002). The wind fields used to drive the model are obtained from operational products prepared by the U.S. National Centers for Environmental Prediction (NCEP).

WW3 solves the spectral action density balance equation for wave number-direction spectra. The implicit assumption of this equation is that properties of the medium (water depth and current) as well as the wave field itself vary on time and space scales that are much larger than the variation scales of a single wave. A further constraint is that the parameterizations of physical processes included in the model do not address conditions where the waves are strongly depth-limited. These two basic assumptions imply that the model can generally be applied on spatial scales (grid increments) larger than 1 to 10 km, and outside the surf zone.

The WW3 model has been validated by comparison with data from buoys and satellites. Results of this validation can be viewed at http://polar.ncep.noaa.gov/waves/validation.

The MMAB has implemented the WW3 model on several different regular grids, spanning various ocean basins. Results from two of these grids, namely the Eastern North Pacific (ENP) and the Western North Atlantic (WNA), can be used to describe the wave climate and the wave energy resource along Canada's Pacific and Atlantic coasts. The ENP grid features a 0.25° by 0.25° resolution and contains over 81,000 nodes spanning the region between latitudes 5°N to 60.25°N and longitudes 170°W to 77.5°W. The WNA grid has a 0.25° by 0.25° resolution and

contains over 54,000 nodes spanning the region between latitudes 0°N to 50°N and longitudes 98°W to 30°W. The ENP grid covers all Canadian waters in the Pacific Ocean, but the WNA grid covers only the southern portion of Canadian waters in the Atlantic. Due to their finer resolution, these grids provide a more realistic representation of land boundaries and smaller water bodies. For this reason, and because shallow water effects are included in the WW3 model, the WW3-ENP and WW3-WNA models may be better suited to predicting wave climate close to shore and in smaller partially enclosed water bodies such as the Bay of Fundy. However, as discussed by Pontes (2003), shallow-water wave transformation models and high resolution grids must be used to provide reliable estimates of wave power in coastal waters. Such models are routinely used to provide detailed estimates of nearshore wave climates for coastal engineering studies.

In addition to operational forecasting, the suite of WW3 models have been applied, using archived wind fields and ice cover charts, to hindcast historical wave fields at 3-hour intervals over several years. The model results (hindcasts and forecasts) are freely available via the internet as binary files in GRIB format. The hindcast WW3 model results are being used for engineering studies of wave climate around the globe.

3.5.1. Analysis Methodology

Data files in binary GRIB format containing results from the WW3-ENP hindcast for a three year period between October 2002 and September 2005 were obtained from the MMAB ftp server. These files contained results for the following variables computed at 3 hour intervals for all nodes:

- significant wave height of combined wind waves and swell, H_s
- peak wave period, T_p
- primary wave direction, and
- u and v components of the mean 10m wind.

A sub-grid containing 676 nodes focused on Canada's Pacific coast was defined to reduce the computational effort. The sub-grid extended from latitude 42°N to 59°N and from longitude - 145°W to -124°W, and featured a 0.25° resolution close to the coast and a 1° resolution in the open ocean.

The following derived variables were computed for all times at each node of the sub-grid:

- the wave energy flux (equation (8) with $T_e=0.9T_p$),
- the wind speed; and
- the wind power density.

The post-processing of these given and derived variables was similar to the methods applied to analyse the AES40 data, described earlier. The results were grouped into datasets describing annual, seasonal and monthly conditions, and simple statistical quantities were computed to characterize the temporal variations at each node during these periods.

The processing and analysis of data from the WW3-WNA hindcast was very similar to the methodology described above; however, in this case, data files were obtained containing results at 3-hour intervals for a five year period, beginning in October 2000. Another sub-grid with variable resolution -0.25° close to the coast and 1° in the open ocean – was defined between latitude 38°N and 50°N and longitude -75°W to -43°W. As before, the results were grouped into datasets describing annual, seasonal and monthly conditions, and simple statistical quantities were computed to characterize the temporal variations at each node.

3.5.2. Results

The mean annual wave power computed from the WW3-ENP data is plotted in Figure 18. The mean wave power in winter and summer are compared in Figure 19.

Figure 20 shows the mean annual wave power computed from the WW3-WNA data. The mean wave power in summer and winter are compared in Figure 21.

Figure 18. Mean annual wave power in the NE Pacific derived from WW3-ENP hindcast data. (points denote sub-grid nodes.)

Figure 19. Mean wave power in the NE Pacific during a) winter and b) summer, from WW3-ENP data. (Note that different colour scales are used.)

Figure 20. Mean annual wave power in the NW Atlantic derived from WW3-WNA hindcast data. (Points denote sub-grid nodes.)

Figure 21. Mean wave power in the NW Atlantic during a) winter and b) summer, from WW3-NWA data. (Note that different colour scales are used.)

3.6. Inter-Comparison of Results

Some confidence in the derived wave power predictions can be gained by comparing results obtained from different data sets. The estimates of mean annual wave power obtained from analysis of the AES40 and WW3-WNA hindcasts are compared graphically in Figure 22. Interestingly, the most noticeable difference is in the southeast part of the overlapping domain, far from land and beyond the continental shelf, where the mean annual wave power estimate

derived from the WW3-WNA data exceeds the estimate derived from the AES40 data by as much as 10 kW/m. However, over most of the continental shelf, including the Scotian Shelf and the Grand Banks, the two estimates agree within a tolerance of 5 kW/m or better. Some of this discrepancy may relate to differences in the methodologies applied in generating the wave hindcasts, while some of it may be due to the fact that two different five year periods were considered in the analysis.

Figure 22. Mean annual wave power derived from AES40 data (points) and WW3-WNA data (isolines).

Figure 23 shows a comparison between the mean monthly wave power estimates derived from analysis of buoy measurements and from the AES40 and WW3-WNA wave hindcasts for MEDS station C44140, located on the southern edge of the Grand Banks at latitude 42.7°N, longitude - 50.6°W. Figure 23 also provides a typical illustration of the strong seasonal variation of the wave energy resource in the northwest Atlantic, where the wave energy in summer (June to August) is typically only one-third of the annual resource. In this case, the seasonal trends in wave energy derived from the measured and hindcast wave data show overall good agreement. Some of the small divergence could be due to the fact that the measured and hindcast wave data were not exactly co-located and did not span the same period.

Similar comparisons for some other Atlantic stations are presented in Figure 24 - Figure 30. In general, the agreement is good at offshore stations with lengthy records, but the agreement at nearshore stations is sometimes less satisfactory. This suggests that the AES40 and WW3-WNA hindcasts are reasonably accurate offshore, but less reliable in nearshore regions. It is noted that

the gradient in wave energy can be very large close to shore, so that small differences in location can lead to sizeable differences in energy.

Figure 31 shows a similar comparison of mean monthly wave power estimates derived from measured wave data and the WW3-ENP hindcast for MEDS station C46208, located off the western shore of the Queen Charlotte Islands at latitude 52.5°N, longitude -132.7°W. Again, the energy levels and the seasonal trends in wave energy derived from the measured and hindcast wave data show good agreement.

Similar comparisons for some other Pacific stations are presented in Figure 32 - Figure 40.

In general, the agreement is satisfactory for offshore stations with lengthy records. This suggests that the WW3-ENP hindcast is reasonably accurate offshore and suggests that a three-year simulation is sufficient to capture the main features of the wave climate in this region. As in the Atlantic, the agreement is less satisfactory at nearshore stations where the spatial gradient in wave climate is large, and the WWW-ENP hindcast is less precise.

Figure 23. Comparison of mean monthly wave power from buoy measurements and wave hindcasts, station C44140.

Figure 24. Comparison of mean monthly wave power from buoy measurements and wave hindcasts, station C44139.

Figure 25. Comparison of mean monthly wave power from buoy measurements and wave hindcasts, station wel416.

Figure 26. Comparison of mean monthly wave power from buoy measurements and wave hindcasts, station C44142.

Figure 27. Comparison of mean monthly wave power from buoy measurements and wave hindcasts, station C44141.

Figure 28. Comparison of mean monthly wave power from buoy measurements and wave hindcasts, station C44138.

Figure 29. Comparison of mean monthly wave power from buoy measurements and wave hindcasts, station C44137.

Figure 30. Comparison of mean monthly wave power from buoy measurements and wave hindcasts, station C44251.

Figure 31. Comparison of mean monthly wave power from buoy measurements and WW3-ENP hindcast, station C46208.

Figure 32. Comparison of mean monthly wave power from buoy measurements and WW3-ENP hindcast, station C46004.

Figure 34. Comparison of mean monthly wave power from buoy measurements and WW3-ENP hindcast, station C46184.

Figure 35. Comparison of mean monthly wave power from buoy measurements and WW3-ENP hindcast, station C46207.

Figure 36. Comparison of mean monthly wave power from buoy measurements and WW3-ENP hindcast, station C46147.

Figure 37. Comparison of mean monthly wave power from buoy measurements and WW3-ENP hindcast, station C46205.

Figure 38. Comparison of mean monthly wave power from buoy measurements and WW3-ENP hindcast, station C46132.

Figure 39. Comparison of mean monthly wave power from buoy measurements and WW3-ENP hindcast, station C46204.

Figure 40. Comparison of mean monthly wave power from buoy measurements and WW3-ENP hindcast, station C46145.

3.7. Discussion of Results

Canadian electricity demand now totals roughly 580 TWh per year, or roughly 18 MWh annually per person. This is equivalent to a mean power of 66,165 MW or roughly 2 kW/person. The three leading electricity demand sectors are manufacturing (38%) residential (28%) and commercial and institutional (22%). Assuming that only 10% of the available wave power is converted into electrical energy, a 1 km wide site with a mean annual power of 25 kW per meter of wave crest could potentially generate 21.9 GWh per year, enough to supply the residential electrical needs of over 4,300 typical Canadians.

Wave energy resources in the NE Pacific are largest in the open ocean far from shore, and decrease as you cross the continental shelf and approach land. The annual mean wave energy flux for exposed deep-water sites located 100 km off Canada's Pacific coast is on the order of 40 to 45 kW/m. Approaching Vancouver Island from the west along the 49°N parallel, the mean annual wave power decreases from ~43 kW/m 150 km offshore, to ~39 kW/m 75 km offshore, to ~25 kW/m at the coast. Moving east along the 53°N parallel, the mean annual wave power decreases from ~44 kW/m 100 km offshore to ~36 kW/m at the western shore of the Queen Charlotte Islands. Wave energy flux in winter (December to February) is typically around six to eight times larger than in summer (June to August).

Meanwhile, the annual mean wave power at exposed deep-water sites near the edge of the continental shelf in the northwest Atlantic varies from around 21 kW/m off southern Nova Scotia to around 50 kW/m on the edge of the Grand Banks east of Newfoundland. The continental shelf in the northwest Atlantic is much wider than in the northeast Pacific, and there is generally more attenuation of wave energy across the shelf, so that the wave energy resources close to shore are often significantly smaller than at the shelf edge. For example, on a line projected across the Scotian Shelf southeast from Halifax, the mean annual wave energy increases from ~9 kW/m at the coast, to ~20 kW/m roughly 200 km offshore, and to ~30 kW/m roughly 400 km offshore. Wave energy resources in the northwest Atlantic also feature a strong seasonal variability – the mean wave energy flux in summer is typically around one-third of the annual value. In eastern

Canada, the richest wave energy resources close to land lie near the southeastern tip of Newfoundland and around Sable Island. The mean annual wave power in these nearshore regions is on the order of 25 kW/m.

By comparison, the mean annual wave energy at exposed deep-water locations off the western coast of Europe varies between ~25 kW/m near the Canary Islands, up to ~75 kW/m off Ireland and Scotland (Pontes, 1998). The European resource is also seasonally variable: the mean wave power in summer is typically between 25% to 50% of the annual value. The European resource also decreases as you approach shore. For example, Pontes et al. (2003) reports that the nearshore wave energy resource along the coast of Portugal varies between ~8 kW/m and ~25 kW/m, while the offshore resource is on the order of 39 kW/m.

The new results presented here are generally consistent with recent analyses of wave energy resources along the Atlantic and Pacific coasts of the U.S. performed by the Electrical Power Research Institute (EPRI, 2005). The EPRI studies indicate that the mean annual wave power at exposed deep-water sites off the coasts of Washington State and Maine are about 40 kW/m, and 25 kW/m, respectively.

The total mean annual wave power off Canada's Atlantic and Pacific coasts has been estimated by integrating the power density along the 1,000m isobath and along the outer edge of the 200-mile fishing zone. The results, summarized in Table 8, show that the mean wave power along the 1,000 m isobath off Canada's Pacific coast totals roughly 37,000 MW or over 55% of Canadian electricity consumption, while the mean waver power along the 1,000 m isobath off Canada's Atlantic coast sums to 146,500 MW, or more than double current electricity demand.

The waters off Canada's Pacific and Atlantic coasts are endowed with rich wave energy resources. The results presented here define the scale of these resources, as well as their significant spatial and seasonal variations. It is important to recognize that due to various factors including environmental considerations and losses associated with power conversion, only a fraction of the available wave energy resource can be extracted and converted into useful power. Even so, the Canadian resources are considered sufficient to justify further research into their development as an important source of renewable energy for the future.

This work has aimed to quantify and map Canadian offshore wave energy resources. As noted previously, the wave power along a coast (above the ~ 150 m depth contour) can vary considerably due to sheltering and bathymetric effects such as wave shoaling, refraction and diffraction. These processes will create pronounced local variations in wave conditions and energy potential close to shore, particularly in regions with complex bathymetry. Clearly, these important local variations are beyond the scope of the present analysis.

Further work is clearly required to improve the definition of Canada's nearshore wave energy resources. Shallow water wave transformation models can be applied to study and quantify nearshore wave conditions provided that the necessary high-resolution bathymetry data is available. A logical next step is to apply such models to extend the present results into selected nearshore regions. Further work is also planned to consider the directionality of the Canadian wave energy resources described herein, and to assess the implications of directionality on resource assessment and energy extraction.

				Mean annual	Mean annual			
Line of	from	to		wave	power			
integration	latitude	Latitude	Length	power	density			
	deg	deg	km	MW	kW/m			
Pacific Ocean								
200 mile limit	46.54	53.49	1,070	54,300	50.7			
1,000m isobath	48.13	54.31	915	37,000	40.4			
Atlantic Ocean								
200 mile limit	40.0	45.0	1,660	62,667	37.8			
200 mile limit	45.0	50.0	590	27,616	46.8			
200 mile limit	50.0	55.0	600	29,079	48.5			
200 mile limit	55.0	60.0	680	29,196	42.9			
200 mile limit	60.0	65.0	570	12,062	21.2			
200 mile limit	65.0	70.0	590	1,334	2.3			
200 mile limit	40.0	70.0	4,690	161,955	34.5			
Atlantic Ocean								
1,000m isobath	41.1	45.0	1,840	61,897	33.6			
1,000m isobath	45.0	50.0	800	36,603	45.8			
1,000m isobath	50.0	55.0	660	24,955	37.8			
1,000m isobath	55.0	60.0	760	16,024	21.1			
1,000m isobath	60.0	64.1	540	7,047	13.0			
1,000m isobath	41.1	64.1	4,600	146,525	31.9			

Table 8. Summary of offshore wave energy resources near Canadian waters.

4. Inventory of Tidal Current Energy Resources

4.1. General Description of Tides

Tides are a regular and predictable phenomenon caused by the gravitational attraction of the moon and sun acting on the oceans of the rotating earth. Because of its relative proximity to the earth, the moon exerts roughly twice the tidal forcing as does the sun. The main lunar forcing oscillates with a period of 24 hours and 50 minutes, which is equal to the time required for a point on the earth to rotate back to the same position relative to the moon during each daily revolution.

The solar and lunar gravitational forces create two bulges in the earth's ocean waters: one directly under or closest to the moon, and the other on the opposite side of the earth (see Figure 41) These bulges are the twice-daily fluctuations in water levels observed in many places around the globe. In reality, this model is complicated by the fact that the earth's axis of rotation is tilted by 23.5° relative to the moon's orbit. The two bulges in the ocean are unequal unless the moon is over the equator. This daily difference in tide amplitude is called the diurnal inequality and repeats over a 14 day cycle as the moon rotates around the earth.

The largest tides are known as Spring tides: these occur at the time of new or full moon when the gravitational pull of the sun and moon are aligned. Neap tides are smaller and occur when the moon is waxing or waning, and the gravitational pull of the moon and sun are not aligned. The spring-neap cycle has a period of 15 days. The 15-day spring-neap cycle, combined with the 14 day diurnal inequality cycle, are responsible for much of the variability of the tides throughout the months of the year.

Figure 41. Tides are generated by the gravitational forcing of the moon and sun.

The tidal fluctuations at any point on earth are the cumulative effect of over a hundred harmonic constituents or cyclic components working together, each with their own amplitude, phase and period or frequency. These constituents combine so that tides completely repeat themselves every 18.6 years. The tide at any location can be completely described by summing the contributions from all constituent. In practice, reasonably accurate estimates can be obtained by considering the 5 to 8 leading constituents while disregarding the others. The principal semi-diurnal (twice daily) constituents are known as M2 (moon, twice daily) and S2 (sun, twice daily), while the principal diurnal (once daily) constituents are known as K1 and O1. Other important constituents include N2, K2 and M4.

Tides move as shallow water waves in the open ocean and in coastal waters. Tsunamis are shallow water waves generated by earthquakes or sub-marine landslides, rather than gravitational effects of the sun and moon. Despite their name, shallow water waves can exist in any water depth. One important characteristic of these waves is that the entire water column below the free surface moves in unison as the wave passes. Shallow water waves, tides included, propagate with a celerity proportional to the square root of the water depth, which can be several hundred kilometres per hour in the open ocean beyond the continental shelves. In the open ocean, tides are small, rarely exceeding 0.5 m in height. However, as a tide wave enters shallower coastal waters, it decelerates, shoals (increases in height) and eventually bumps into land. These coastal effects can be very important, as evidenced by the fact that a small amplitude deep ocean tide can generate 15 m tides in the upper Bay of Fundy. The reader is directed to the Canadian Tidal Manual (Forrester, 1983) for additional information concerning the nature and behaviour of tides.

Tidal currents result from the passage of tide waves. As the water level rises, tidal currents tend to flow in the direction of propagation of the tide wave. These flows are often referred to as the flood tide. During the ebb tide, when water levels recede, the tidal currents tend to reverse themselves and flow opposite to the propagation direction of the tide wave.

As noted above, the tidal current at any location varies over a wide range of time scales. The flow direction typically reverses between two and four times daily, depending on whether the tides are diurnal or semi-diurnal. In addition, the peak velocity during each ebb and flood varies over weeks, months and years. The entire pattern of temporal fluctuation repeats over an 18.6 year cycle. It is worth noting that semi-diurnal tides produce roughly twice the peak current of a diurnal tide of the same height. This is because the semi-diurnal tide rises and falls in half the time of the equivalent diurnal tide.

Coastal tidal flow patterns often feature strong shears and steep gradients, which is another way of stating that the velocities vary strongly with location. At many locations, high-velocity highenergy flows are confined to quite small areas. This characteristic can make it particularly difficult to quantify and assess tidal current energy resources. The spatial variation depends on how the tide waves interact with the local bathymetry of the area. One important factor is the presence of narrow passages or channels which can act to concentrate and accelerate the flows. However, the flow through a passage is also constrained by the loss of energy due to friction. The discharges and flow velocities in a passage result from a fine balance between the energy forcing the flow into the passage and the dissipation due to friction within the passage. Clearly, if the energy extracted from the flow within a passage increases, either by natural causes or the installation of an hydraulic turbine, then the discharge and velocity through the passage will be lowered. There is clearly an upper limit to the energy that can be extracted from such tidal flows. Another important factor is the phasing of the tidal flows. Very large currents can arise when the tide is high on one side of a passage at the same time that the tide is low on the other side. Such phase differences can also generate significant tidal flows near large Islands and major headlands.

Tidal currents in the open ocean are too weak for economically viable energy extraction using existing or anticipated technologies. For the foreseeable future, development will likely be restricted to sites with peak flow velocities on the order of 2 m/s or more, and mean flow velocities above 1 m/s. Such high-energy flows are typically confined to local areas, such as:

- entrances to estuaries and coastal embayments;
- narrow channels or passages between islands; and

45

• some major headlands.

4.2. Theoretical Basis for Resource Assessment

The power (P) in a tidal flow is proportional to the cube of the flow velocity. Hence, the power increases rapidly with increasing flow velocity.

The power density (p) of a tidal flow can be written as

$$p = \frac{P}{A} = 0.5 \rho U^3$$
 , (12)

where P is the power [Watts], A is the cross-sectional area (normal to flow) under consideration $[m^2]$, $\rho \approx 1,027 \text{ kg/m}^3$ is the density of seawater, and U is the flow speed [m/s]. The annual mean power density for the site is equal to the average value of p over the year.

If we assume that the temporal variation in current speed at a site can be written as

$$u(t) = U_{\max} \sin(\frac{2\pi}{T}t) \quad , \tag{13}$$

where U_{max} is the maximum speed and T is the period of oscillation, then the average speed over a half cycle is

$$\overline{u} = \frac{\int_{0}^{T/2} u(t)dt}{\int_{0}^{T/2} dt} = \frac{2}{\pi} U_{\text{max}}$$
(14)

or 64% of U_{max} . The average power density over a half cycle is

$$\overline{p} = \frac{0.5\rho \int_0^{T/2} u^3(t)dt}{\int_0^{T/2} dt} = \frac{2\rho}{3\pi} U_{\text{max}}^3 \approx 0.21\rho U_{\text{max}}^3$$
(15)

or 42% of the maximum power density. Expressed in terms of mean velocity, the average power density over a half cycle is

$$\overline{p} = \frac{\pi^2 \rho}{12} \overline{u}^3 \approx 0.82 \rho \overline{u}^3 \tag{16}$$

One important result from this simple sinusoidal model is that the average power density over a half cycle is 1.64 times greater than the power density of the average speed over the same half cycle.

Many potential high-energy sites are located at narrow passages between islands or headlands. At any instant in time, the flow velocity within the passage will vary with depth, and with position across the channel. For typical sites, the strongest flows tend to occur within the upper half of the water column, and near the centre of the passage. It is important to account for these horizontal and vertical spatial variations when assessing energy resources due to tidal currents.

According to the well known Betz law, which applies to both wind turbines and hydraulic turbines, a theoretical maximum of 59% of the kinetic energy in a flow can be converted to mechanical energy using a turbine. Forty-one percent of the incident energy is required to ensure

that the fluid has enough kinetic energy to depart from the turbine. Once ecological considerations, power conversion efficiencies and other factors are taken into consideration, only a fraction of the available tidal stream energy resource can be extracted at any site. In other words, the recoverable resource will be a small fraction of the available resource.

4.3. Tide Modelling

Numerous numerical simulations of tides (computer tide models) have been developed by many agencies, firms and individuals to describe and predict water levels and flows in the Oceans near Canada. In a nutshell, these models attempt to simulate the propagation of tides into coastal waters by solving a set of governing equations over a discretized model domain. By necessity, each model simulates the tide within a region, and results from multiple models must be combined to describe the flows in all of Canada's coastal waters.

In many models, the non-linear shallow water equations for sea level and depth averaged velocity are solved using a finite-element discretization in space and harmonic expansion in time. The domain is represented by a mesh of triangles, where the water depth and bottom roughness are specified at each node (the corners of the triangles). The node density (triangle size) is normally varied over the domain to suit the local water depth, the bathymetric variation, and the desired resolution. In general, densely packed nodes and very small triangles are required to obtain accurate and detailed flow predictions at sites where the bathymetry and/or the flow field feature strong gradients.

It is generally much easier to simulate water levels than to model tidal currents. This is because the spatial gradients in water level are much weaker than the gradients in velocity. Finer resolution models made up of a greater number of smaller and more densely packed triangles are required to provide accurate simulations of flow velocities in complex coastal regions. Such models require detailed information on bathymetry and bottom roughness. To yield accurate predictions, tide models generally need to be calibrated by comparison to measured water level and velocity data. A well-constructed and well-calibrated tide model can yield excellent predictions of water levels, and good predictions of depth averaged tidal currents. However, many existing models were developed to predict water levels and not flow velocities. Hence, their grids are not sufficiently refined to yield accurate velocity predictions in complex coastal regions.

4.3.1. Data Sources

Results from fourteen different tide models were obtained and analysed for this study. Some of the model characteristics are summarized in Table 9.

Six datasets with model results were obtained from the program WebTide, disseminated without charge over the internet by Fisheries and Oceans Canada (DFO). WebTide is a graphical user interface to a tidal prediction program. WebTide predictions are based on analysis of outputs from numerical models of tides implemented on seven different domains. The WebTide datasets provide a good description of the tides and tidal currents on a regional scale for almost all of Canada. (Unfortunately, the available data for Hudson Bay includes information on tidal elevations, but not tidal currents.) However, the WebTide grids are often too coarse to provide reliable tidal current predictions at narrow passages.

Four model result datasets were supplied by Triton Consultants Inc. The Triton model grid for the waters around Vancouver Island was developed by the Institute of Ocean Sciences with the assistance of Triton Consultants. The grid is considered to be one of the best available discretizations of B.C.'s coastal waters. In general, the Triton model grids feature a higher density of nodes in shallow water and thus have the potential to provide more accurate predictions of tidal currents in coastal waters than do the WebTide models. The Triton models have been calibrated by comparison with measured data and used to predict tides and tidal currents for engineering studies across Canada.

Results from high-resolution models of the upper Bay of Fundy and the Bras d'Or Lakes were contributed by Dr. John Loder of DFO's Bedford Institute of Oceanography (BIO). The upper Bay of Fundy model is described in Dupont et al. (2005), while the Bras d'Or Lakes model is described in Dupont et al. (2003). Both of these models have been validated by comparison with measured data and feature detailed high resolution grids. The intermittent wetting and drying of the extensive mud-flats within the upper Bay of Fundy is an important feature of the tidal flows within the Bay – and this process was included in the Fundy model.

Dr. Guoqi Han of DFO's Northwest Atlantic Fisheries Centre in St. John's contributed results from two medium-resolution regional models covering the Newfoundland Shelf (including the Grand Banks) and the Gulf of St. Lawrence. Both of these models were validated by comparison with measured current data.

In every case, the model results were expressed in terms of the amplitude and phase of the leading tidal constituents for every node in the model domain. In most cases, amplitude and phase values were supplied to describe the water surface elevation and the u and v components of depth averaged velocity at each node. The exceptions were the HB2 model, where only elevation constituents were available, and the NS and GSL2 models, were only velocity constituents were provided. In most cases, the location and water depth of each node was also supplied, along with the finite element mesh used in the modelling. The number of nodes and the number of constituents varied from model to model, as indicated in Table 9. The domain, bathymetry and finite element mesh for some of these models are shown in Figure 42 – Figure 49.

No.	Name	Abbrev .	Source	No. of nodes	Constituents
1	Vancouver Island	VI	Triton	132,022	K1, O1, P1, Q1, K2, M2, N2, S2
2	Queen Charlotte Isl.	QC	Triton	7,575	K1, O1, P1, Q1, M2, K2, N2
3	Hudson Bay	HB1	Triton	45,230	K1, S2, N2, M2, K2, M4, MS4
4	Gulf of St. Lawrence	GSL1	Triton	7,763	K1, O1, M2, S2, M2
5	Bay of Fundy	Fundy	DFO - BIO	74,934	K1, O1, N2, S2, M2, M4
6	Bras d'Or Lakes	BdO	DFO - BIO	8,614	K1, O1, N2, S2, M2, M4, Mf
7	Newfoundland Shelf	NS	DFO - NAFC	10,927	K1, O1, S2, M2, N2
8	Gulf of St. Lawrence	GSL2	DFO - NAFC	7,734	K1, O1, S2, M2, N2
9	Scotian Shelf	SS	DFO - WebTide	5,261	K1, O1, M2, K2, N2, S2, L2, M4, NU2, 2N
10	NW Atlantic	NWA	DFO - WebTide	17,055	K1, O1, M2, N2, S2
11	Arctic	Arctic	DFO - WebTide	17,356	K1, O1, M2, N2, S2
12	Hudson Bay	HB2	DFO - WebTide	13,429	K1, O1, M2, N2, S2, M4, MS4
13	Quatsino Sound	QS	DFO - WebTide	43,118	K1, O1, P1, M2, N2, S2, Z0
14	NE Pacific	NEP	DFO - WebTide	51,330	K1, O1, P1, Q1, M2, K2, N2, S2

Table 9. Summary of tide models considered in this study.

Figure 42. Bathymetry and mesh for the part of the Vancouver Island model (132,022 nodes, partial domain shown).

Figure 43. Bathymetry and mesh for part of the NE Pacific model (51,330 nodes, partial domain shown).

Figure 44. Bathymetry and mesh for the Arctic model (17,356 nodes).

Figure 45. Bathymetry and mesh for the Hudson Bay (HB1) model (45,230 nodes).

Figure 46. Bathymetry and mesh for the NW Atlantic model (17,055 nodes, partial domain shown).

Figure 47. Bathymetry and mesh for the Gulf of St. Lawrence (GSL1) model (7,575 nodes).

Figure 48. Bathymetry and mesh for the Scotain Shelf model (5,261 nodes).

Figure 49. Bathymetry and mesh for the Fundy model (74,934 nodes).

4.3.2. Analysis Methodology

For each set of model results described in the previous section, an extensive set of marine resource parameters have been derived to describe the spatial and temporal variations of the tides, the tidal flows, and the power associated with those flows. The methodology used to compute these parameters is described in what follows.

Parameters were derived to describe:

- the tidal range;
- the depth averaged tidal flow;
- the power density of the depth averaged flow; and
- properties of the tidal ellipse for each constituent.

The time series of water surface elevation $\eta(t)$ was computed according to

$$\eta(t) = \sum_{i=1}^{M} \eta_i \cos(\omega_i t - a_i) \quad , \tag{17}$$

where η_i , a_i and ω_i are the amplitude, phase and frequency of the ith constituent, and M is the total number of constituents. Similarly, the time series of the E-W and N-S depth averaged velocity components u(t) and v(t) were computed according to

$$u(t) = \sum_{i=1}^{M} u_i \cos(\omega_i t - b_i) \quad , \tag{18}$$

$$v(t) = \sum_{i=1}^{M} v_i \cos(\omega_i t - c_i) \quad , \tag{19}$$

Where u_i and b_i are the amplitude and phase of the i^{th} constituent for u(t), and v_i and c_i are the amplitude and phase of the i^{th} constituent for v(t). The time series of depth averaged flow speed was defined as

$$s(t) = \left[u^{2}(t) + v^{2}(t)\right]^{1/2} , \qquad (20)$$

The time series of depth averaged power density was calculated as

$$p(t) = \frac{1}{2}\rho s^{3}(t)$$
 , (21)

All time series were computed at a one-hour time step for a one year (N=8766 hour) duration, with ρ =1027 kg/m³.

A zero-crossing analysis was applied to determine the range (H) of each tidal cycle from $\eta(t)$.

The annual time series of elevation, speed and power density and the set of consecutive ranges were analysed to determine the following statistical parameters:

• minimum and maximum values;

• mean value:
$$\overline{\eta} = \frac{\sum \eta}{N}$$
;

• standard deviation (
$$\sigma$$
): $\eta_{\sigma} = \sqrt{\frac{\sum (\eta - \overline{\eta})^2}{N}}$;

• root-mean-squared (rms) value:
$$\eta_{rms} = \sqrt{\frac{\sum \eta^2}{N}}$$
; and

• the values corresponding to cumulative probabilities of 10%, 25%, 50%, 75%, and 90%.

For example, the parameter $s_{25\%}$ denotes the speed that is exceeded 75% of the time (not exceeded 25% of the time), while the parameter $p_{90\%}$ denotes the power density that is exceeded only 10% of the time (not exceeded 90% of the time).

In computing the annual time series it was assumed for simplicity that the amplitude and phase of each constituent remained constant throughout the year, whereas in reality these coefficients vary over an 18.6 year cycle. Thus, the annual time series that were synthesized can be considered representative of conditions during a "typical" year, rather than a specific calendar year. The effect of this simplification on the resulting speed and power density statistics was investigated for a number of sites and found to be small in all cases. (The main difference is that the extremes

(maximums) are slightly under-predicted by the approximate method. The non-extreme statistics are predicted with good accuracy using this method. Thus, the approximation is considered to be reasonable and sufficiently accurate for the purposes of this study. The sensitivity of these results to the time-step was also investigated to confirm that the one-hour time step was sufficient.

The methodology will be illustrated using data for two of Canada's largest tidal power sites: Minas Passage in the upper Bay of Fundy, and the channel between Mill Island and Salisbury Island in western Hudson Strait. Figure 50 shows time series of the tide level, depth averaged velocity, depth averaged speed and depth averaged power density near the centre of Minas Passage over a typical 14 day spring-neap cycle. The tides are strongly semi-diurnal and feature two similar ebbs and two similar floods each day. The cumulative distributions of speed and power density for this site (based on a one year simulation) are shown in Figure 51. This site features an average flow speed of 2.11 m/s and an average power density of 9.06 kW/m². The median speed (the speed exceeded 50% of the time) is 2.17 m/s and the median power density is 5.24 kW/m^2 . Since the depth is 72 m, the average power of the tidal flows at this site per metre width across the passage is roughly 652 kW/m.

Figure 52 and Figure 53 show the corresponding time series and probability distributions for the channel between Mill Island and Salisbury Island, where the tide is also semi-diurnal. It is interesting to note that the flow speed remains above 0.4 m/s at all times, never becoming slack. The flows in this channel are less intense than at Minas Passage, but since the channel is roughly three times deeper and seven times wider than Minas Passage, they represent a significant tidal energy resource.

To illustrate conditions typical of a site where the tide is mixed (a mixture of diurnal and semidiurnal oscillations), corresponding results for Cape St. James, located at the southern tip of the Queen Charlotte Islands, are presented in Figure 55 to Figure 56. Here, the tide features 2 ebbs and 2 floods on most days, but their intensity is often quite dissimilar.

The preceding analysis was applied at every node of the fourteen model domains discussed in Section 4.3.1 - a total of 442,348 locations in the oceans and coastal waters around Canada. These results may be used to help create a digital atlas of tidal energy resources.

Figure 50. a) Tide level, b) depth averaged velocity; c) depth averaged speed; and d) depth averaged power density near the centre Minas Passage over a typical 15 day cycle.

Figure 51. Cumulative distribution of a) depth averaged speed; and b) depth averaged power density near the centre of Minas Passage.

Figure 52. a) Tide level; b) depth averaged velocity; c) depth averaged speed; d) depth averaged power density between Mill Island and Salisbury Island over a typical 15 day cycle.

Figure 53. Cumulative distribution of a) depth averaged speed and b) depth averaged power density between Mill Island and Salisbury Island.

Figure 54. a) Tide level; b) depth averaged velocity; c) depth averaged speed; and d) depth averaged power density near Cape St. James over a typical 15 day cycle.

Figure 55. Cumulative distribution of a) depth averaged speed and b) depth averaged power density near Cape St. James.

4.3.3. Results

Selected results from the preceding analysis will be presented in what follows, arranged by ocean, starting with the Pacific.

Pacific Ocean

Figure 56 shows the mean tide range along the BC coast. The rms velocity of the tidal flows throughout the region, as predicted by the tidal models discussed above, is presented in Figure 57 to Figure 59. The mean power density of the tidal flows is plotted in Figure 60 to Figure 62.

Figure 56. Mean tide range along the BC coast (m).

Figure 57. Root-mean-square tidal current speed, southern Vancouver Island.

Figure 58. Root-mean-square tidal current speed, northern Vancouver Island.

Figure 59. Root-mean-square tidal current speed, Queen Charlotte Islands.

Figure 60. Mean power density, southern Vancouver Island.

Figure 61. Mean power density, northern Vancouver Island.

Figure 62. Mean power density, Queen Charlotte Islands.

Atlantic Ocean

Figure 63 shows the mean tide range in eastern Canada. The rms velocity of the tidal flows throughout the region, as predicted by the tidal models discussed above, is presented in Figure 64. The mean power density of the tidal flows is Eastern Canada is plotted in Figure 65. Figure 66 to Figure 68 show the mean tide range, the rms velocity and the mean power density of the tidal flows in the Bay of Fundy.

Figure 63. Mean tide range in eastern Canada.

Figure 64. Root-mean-square tidal current speed, eastern Canada.

Figure 65. Mean power density, eastern Canada.

Figure 66. Mean tide range, Bay of Fundy and Scotian Shelf (m).

Figure 67. Root-mean-square tidal current speed, Bay of Fundy.

Figure 68. Mean power density, Bay of Fundy.

75

Arctic Ocean

The mean tide range throughout Hudson Bay and the Arctic Archipelago is plotted in Figure 69 and Figure 70. RMS flow velocities throughout the region are plotted in Figure 71 to Figure 73. Finally, Figure 74 to Figure 75 show the mean power density of the flows in Hudson Bay and the Arctic Archipelago, as predicted by the tidal models discussed previously.

Figure 69. Mean tide range in Hudson Bay (m).

Figure 70. Mean tide range in the Arctic Archipelago (m).

Figure 71. Root-mean-square tidal current speed, Hudson Bay.

Figure 72. Root-mean-square tidal current speed, western Arctic.

Figure 73. Root-mean-square tidal current speed, Hudson Bay and Hudson Strait.

Figure 74. Mean power density, Hudson Bay and Hudson Strait.

Figure 75. Mean power density, Arctic.

4.4. Site Identification and Resource Inventory

Triton Consultants were commissioned to undertake an inventory of tidal current resources across Canada, using the methodology developed for their 2002 assessment of tidal current resources in British Columbia (Triton, 2002). A summary of their work is presented here for easy reference. Triton's complete report is presented as Annex A.

Before considering this study and its results, it is worth recalling that tidal currents vary rapidly with space and time. At most sites, the flow velocity goes to zero from two to four times per day, and reaches its peak annual value for only a few hours per year. The velocity fluctuation during each half cycle is roughly sinusoidal, but the peak speed varies from cycle to cycle as a consequence of the lunar and solar gravitational forcing. At most sites, the direction of flow also reverses between two and four times per day.

Tidal current resources are best characterized by the mean power, which represents an integration or averaging of these temporal fluctuations over time. The annual mean power is the average value of the instantaneous power throughout the year. Similarly, the mean power density is the average value of the instantaneous power density over time. The mean power density characterizes the average intensity of the flow at the site, while the mean power indicates the scale of the energy resource. Energy extraction will not be feasible if the power density is either too small (the flows are too weak for efficient operation of an energy conversion device) or too large (the flows are too strong for safe and efficient operation and maintenance).

It is important to note that the power values quoted in this report represent the energy resources available in tidal flows, and do not represent the economically realisable resources. For various reasons, only a small fraction of the available energy at any site can be extracted and converted into a more useful form. The recoverable resource will be limited by the following factors, among others:

- environmental and ecological considerations;
- adverse effects on tides and tidal currents;
- conflicting uses;
- the efficiency of the energy conversion device(s);
- economic factors;
- climate related factors (ice, climate change)

4.4.1. Methodology

Triton's method involves three steps:

- identifying passages and reaches with strong tidal currents;
- determining basic parameters for each site, including the passage width, average depth, and the maximum ebb and flood velocities during large tides; and
- estimating the annual mean power density and annual mean power from these basic parameters.

The inventory is based on a variety of data sources, including:

- Canadian Sailing Directions published by the Canadian Hydrographic Service (CHS);
- *Nautical Charts* and *Tide Books* issued by the CHS;
- Database of tide level and tidal current constituents developed by CHS; and
- Results from some of the numerical tidal models discussed in Section 4.3.1.

Triton examined a large number of publications, including roughly 700 nautical charts, 22 Sailing Directions, and 7 Tide and Current Tables.

At each potential site, the mean maximum depth averaged current speed (U_{max}) is estimated as

$$U_{\rm max} = 0.85 \frac{V_f + V_e}{2}$$
(22)

where V_f is the maximum speed at the surface in the passage during a large flood, V_e is the maximum surface speed during a large ebb, and the factor 0.85 accounts for the lateral and vertical velocity variations across the channel. The annual mean power density is computed as

$$\overline{p} = \frac{2\rho}{3\pi} \frac{(a_f U_{\text{max}})^3 + (a_e U_{\text{max}})^3}{2}$$
(23)

Where $a_f U_{max}$ denotes the annual mean peak flood current velocity, and $a_e U_{max}$ denotes the annual mean of the current velocity at peak ebb. Triton assumed $a_f = 0.9$ and $a_e = 0.7$ at all locations except in British Columbia, where diurnal tidal currents are particularly strong. It was assumed that $a_e = 0.5$ for sites in southern B.C., and $a_e = 0.6$ for sites in northern B.C.. The annual mean power at the site was calculated according to

$$\overline{P} = wh_{ave}\overline{p} \tag{24}$$

where w denotes the width of the passage and h_{ave} is the average depth.

4.4.2. Results

A total of 260 potential sites were identified. Of these, 190 sites had potential mean power estimated to be greater that 1 MW. Table 10 shows the cumulative mean potential tidal current energy by Province and Territory. Nunavut has by far the greatest potential resource (30,567 MW), while British Columbia has the most sites greater than 1 MW (89 sites). Table 11 shows the distribution of mean potential power by region. Over 70% of the Canada's tidal current energy resources lie within Hudson Strait, which connects Hudson Bay with Baffin Bay and the Northwest Atlantic.

Province	Potential Tidal Current Energy MW	Number of Sites	Average Size MW
Northwest Territories British Columbia Québec Nunavut New Brunswick PEI Nova Scotia Newfoundland	35 4,015 4,288 30,567 636 33 2,122 544	4 89 16 34 14 4 15 15	9 45 268 899 45 8 141 36
TOTAL	42,240	191	221

Table 10. Mean potential tidal current energy by Province and Territory.

	Potential Tidal	Number	Average
Region	Current Energy	of Sites	Size
5	MW		MW
Vancouver Island Mainland	3,580	62	58
Pacific Mainland North	353	18	20
Queen Charlotte Islands	81	9	9
Arctic	1,008	30	34
Hudson Strait	29,595	8	3,699
Ungava	4,112	10	411
St. Lawrence River	153	4	38
Gulf of St Lawrence	537	15	36
Atlantic North	65	6	11
Atlantic South	30	8	4
Bay of Fundy	2,725	21	130
TOTAL	42,240	191	221

Table 11. Mean potential tidal current energy by region.

All sites in southern and northern British Columbia with mean power greater than 1 MW are summarized in Table 12 and Table 13 respectively. Table 14 lists the sites in the Northwest Territories; Table 15 shows the sites in Nunavut; Table 16 shows the sites in Québec; Table 17 shows the sites in Newfoundland and Labrador; while Table 18, Table 19, and Table 20 list the sites in Nova Scotia, Prince Edward Island and in New Brunswick.

The leading tidal current energy sites across Canada are also mapped in Figure 76. Figure 77, Figure 78 and Figure 79 show detailed views of this map, centred on the Pacific coast, the Arctic Archipelago, and the Atlantic coast, respectively. In these maps, the size and colour of the circles are scaled and shaded in proportion to the mean potential power of each site.

This inventory, while likely not fully comprehensive, represents the best possible pan-Canadian assessment that could be made considering the level of funding, the available information, and the vast extent of Canada's coastal waters. Despite best efforts, it is entirely possible that some good potential sites have been missed. Hence, this inventory should be considered as a lower bound estimate to both the number of sites and the total tidal stream energy resource.

Site Name	Latitude	Longitude	Maximum Curre Speed Flood	Maximum Curre Speed Ebb	Mean Maximur Depth Average Current Speed	Mean Power Density	Width of Passa	Average Depth Passage	Flow Cross- sectional Area	Mean Potentia Power
			nt	int.	α@ 3		Ĵе	of	2	=
	deg	deg	knot	m/s	m/s	kW/m ²	m	m	m ²	MW
Seymour Narrows	50.13	-125.35	16	14	6.56	18.16	769	41	33,331	786
N. Boundary Passage	48.79	-123.01	4	4	1.75	0.50	5,158	140	734,949	366
Discovery Pass. S.	50.00	-125.21	7	7	3.06	3.68	1,459	42	65,626	327
Boundary passage	48.69	-123.27	3.5	3.5	1.53	0.33	4,472	1/5	/93,/60	265
Current Passage 2	50.39	-125.86	6	6	2.63	1.68	1,502	80	123,931	208
Weyton Passage	50.59	-126.82	6	6	2.63	1.68	1,535	75	118,985	200
Current Passage 1	50.41	-125.87	5	5	2.19	0.97	1,398	100	143,331	139
Dent Rapids	50.41	-125.21	11	8	4.16	6.67	420	45	19,955	133
South Pender Is	48.72	-123.19	4	4	1.75	0.50	1,985	100	203,416	101
Yaculta Rapids	50.38	-125.15	10	10	4.38	7.78	539	20	12,135	94
Arran Rapids	50.42	-125.14	14	10	5.25	13.45	271	22	6,629	89
Secheldt Rapids 2	49.74	-123.90	14.5	16	6.67	27.60	261	8	2,739	76
Gillard Passage 1	50.39	-125.16	13	10	5.03	11.84	237	16	4,393	52
Scott Channel	50.79	-128.50	3	3	1.31	0.21	9,970	22	244,256	51
Active Pass	48.86	-123.33	8	8	3.50	3.98	561	20	12,628	50
Nahwitti Bar 1	50.89	-127.99	5.5	5.5	2.41	1.29	2,993	9	34,417	45
Race Passage	48.31	-123.54	6	1	2.84	2.14	884	20	19,885	42
Green Pt 2	50.45	-125.52	6	6	2.63	1.68	538	35	20,157	34
Blackney Passage	50.57	-126.69	5	5	2.19	0.97	814	40	34,598	34
GreenPt Rap. 1	50.44	-125.51	1	(3.06	2.67	440	25	12,093	32
Porlier Pass	49.01	-123.59	9	8	3.72	4.78	339	15	5,926	28
Becher Bay	48.32	-123.62	3	3	1.31	0.21	2,148	60	134,263	28
Upper rapids 2	50.31	-125.23	9	9	3.94	5.67	242	18	4,955	28
Gillard Passage 2	50.40	-125.15	10	8	3.94	5.67	393	10	4,916	28
Whirlpool Rapids	50.46	-125.76	1	(3.06	2.67	321	28	9,804	26
Surge Narrows	50.23	-125.16	6	6	2.63	1.68	413	30	13,432	23
Chatham Islands	48.45	-123.26	6	6	2.63	1.68	903	12	13,099	22
Quatsino Narrows	50.55	-127.56	9	8	3.72	4.78	207	18	4,240	20
Hole-in-the-Wall 1	50.30	-125.21	12	9.5	4.70	9.67	189	8	1,985	19
Village Island	50.64	-126.51	3	3	1.31	0.21	1,234	70	89,461	19
Green Pt 3	50.44	-125.57	5	5	2.19	0.97	673	25	18,498	18
Nahwitti Bar 2	50.87	-127.99	5.5	5.5	2.41	1.29	2,012	4	13,078	1/
First Narrows	49.32	-123.14	6	6	2.63	1.68	418	16	7,734	13
Buckholtz Ch 2	50.49	-127.60	3	3	1.31	0.21	1,073	50	56,329	12
Buckholtz Ch 1	50.49	-127.67	3	3	1.31	0.21	997	50	52,357	11
Tallac - Erasmus Is	50.44	-125.47	3	3	1.31	0.21	665	75	51,522	11
Lower Rapids 1	50.31	-125.26	1	1	3.06	2.67	371	8	3,891	10
Picton Point	50.46	-125.40	3	3	1.31	0.21	881	50	46,235	10
Charles Bay Rapids	50.42	-125.49	5	5	2.19	0.97	664	12	9,631	9
Pearse Passage	50.58	-126.90	4	4	1.75	0.50	1,168	13	18,104	9
vveicome Passage	49.51	-123.97	3	3	1.31	0.21	/46	50	39,189	8
Alert Bay	50.57	-126.93	3	3	1.31	0.21	1,//1	18	36,311	8
Gabriola Pass.	49.13	-123.70	8.5	9	3.83	5.21	137	8	1,435	1

Site Name	Latitude	Longitude	Maximum Current Speed Flood	Maximum Current Speed Ebb	Mean Maximum Depth Average Current Speed	Mean Power Density	Width of Passage	Average Depth of Passage	Flow Cross- sectional Area	Mean Potential Power
	deg	deg	knot	m/s	m/s	kW/m²	m	m	m²	MW
Second Narrows	49.29	-123.02	6	6	2.63	1.68	254	14	4,159	7
Haddington Passage 2	50.59	-127.02	3	3	1.31	0.21	1,311	20	29,492	6
Moresby Passage	48.73	-123.34	3	3	1.31	0.21	1,191	20	26,793	6
Nitinat Narrows	48.67	-124.85	8	8	3.50	3.98	61	20	1,376	5
Stuart Narrows	50.90	-126.94	6	7	2.84	2.14	261	7	2,478	5
Hamber Island	49.32	-122.94	4	4	1.75	0.50	414	23	10,362	5
Dodds Narrows	49.14	-123.82	9	8	3.72	4.78	91	9	1,047	5
Sansum Narrows	48.78	-123.56	3	3	1.31	0.21	553	40	23,509	5
Gillard Passage 3	50.39	-125.16	10	8	3.94	5.67	92	5	686	4
Haddington Passage 1	50.61	-127.02	3	3	1.31	0.21	570	25	15,684	3
Matlset Narrowsq	49.24	-125.80	4	4	1.75	0.50	464	10	5,799	3
Tsownin Narrows	49.78	-126.65	3	3	1.31	0.21	283	45	13,460	3
Hayden Passage	49.40	-126.11	4	4	1.75	0.50	312	15	5,457	3
N Sydney Is	48.67	-123.35	3	3	1.31	0.21	1,029	9	11,833	2
Scouler Pass	50.31	-127.82	4	4	1.75	0.50	512	4	3,327	2
Dawley Passage	49.15	-125.79	3	3	1.31	0.21	289	20	6,509	1
Neilson Is - Morpheus	49.16	-125.88	5	5	2.19	0.97	202	4	1,311	1
Tsapee Narrows	49.12	-125.82	4	4	1.75	0.50	280	7	2,517	1
Felice Is - Grice Pt	49.15	-125.91	3	3	1.31	0.21	339	12	4,915	1

Total: 3,580

Table 12. Tidal current power sites in southern British Columbia.

Site Name	Latitude	Longitude	Maximum Current Speed Flood	Maximum Current Speed Ebb	Mean Maximum Depth Average Current Speed	Mean Power Density	Width of Passage	Average Depth of Passage	Flow Cross- sectional Area	Mean Potential Power
	deg	deg	knot	m/s	m/s	kW/m ²	m	m	m ²	MW
Nakwakto Rapids	51.10	-127.50	14	16	6.56	29.06	434	10	5,643	164
Otter Passage	53.00	-129.73	6	6	2.63	1.86	620	50	32,860	61
Beaver Passage	53.73	-130.37	4	4	1.75	0.55	810	100	83,430	46
Outer Narrows	51.09	-127.63	7	10	3.72	5.29	210	17	4,206	22
Perceval Narrows	52.33	-128.38	5	5	2.19	1.08	382	25	10,709	12
Hiekish Narrows	52.88	-128.49	4	4.5	1.86	0.66	571	25	16,000	11
Draney Narrows`	51.47	-127.56	9	9	3.94	6.28	139	8	1,463	9
Kildidt Narrows	51.89	-128.11	12	12	5.25	14.88	75	2	375	6
Hidden Inlet	54.95	-130.33	9	9	3.94	6.28	142	3	781	5
Porcher Narrows	53.90	-130.47	7	7	3.06	2.95	120	10	1,560	5
Freeman Passage	53.85	-130.58	4	4	1.75	0.55	150	32	5,250	3
Tuck Narrows	54.40	-130.26	6	6	2.63	1.86	138	7	1,379	3
Eclipse Narrows	51.09	-126.77	6	5	2.41	1.43	141	6	1,269	2
Clement Rapids	53.20	-129.04	6	6	2.63	1.86	80	7	800	1
Schooner Channel	51.06	-127.52	6	6.5	2.73	2.10	72	6	648	1
Hawkins Narrows	53.41	-129.42	8	8	3.50	4.41	55	3	301	1
Higgins Passage 2	52.48	-128.71	5	5	2.19	1.08	173	3	1,039	1
Nelson Narrows 1	51.77	-127.43	3.5	3.5	1.53	0.37	313	6	2,817	1
Masset Sound	53.98	-132.00	5	5.5	2.30	1.25	750	20	17,250	21
Rose Spit	54.25	-131.52	2.5	2.5	1.09	0.13	11,000	8	121,000	16
Houston Stewart Channe	52.16	-131.12	5	5	2.19	1.08	610	17	12,200	13
Parry Passage	54.18	-133.00	5	3	1.75	0.55	594	28	18,414	10
Skidigate Entrance	53.36	-131.90	3	3	1.31	0.23	1,322	30	43,626	10
Fairbairn Channel	53.04	-131.68	3	3	1.31	0.23	710	25	19,880	5
Skuttle Passage	52.66	-131.68	2	3	1.09	0.13	510	45	24,480	3
Alexandra Narrows	54.05	-132.57	2	2.5	0.98	0.10	420	25	11,760	1
Tasu Narrows	52.74	-132.11	1.5	1.5	0.66	0.03	425	82	36,125	1

Total:	434
Total:	434

Table 13. Tidal current power sites in northern British Columbia.

Site Name	Latitude	Longitude	Maximum Current Speed Flood	Maximum Current Speed Ebb	Mean Maximum Depth Average Current Speed	Mean Power Density	Width of Passage	Average Depth of Passage	Flow Cross- sectional Area	Mean Potential Power
	deg	deg	knot	m/s	m/s	kW/m ²	m	m	m²	MW
Cape Parry	70.27	-124.78	4	4	1.75	0.63	2,000	10	20,800	13
Pearce Point	69.83	-122.69	4	4	1.75	0.63	2,000	10	20,800	13
Cape Kellet	71.98	-126.13	2.5	2.5	1.09	0.15	2,000	20	40,800	6
Observation Point	70.66	-128.27	2.5	2.5	1.09	0.15	2,000	10	20,800	3
Cape Parry	70.27	-124.78	4	4	1.75	0.63	2,000	10	20,800	13
									Total:	35

Table 14. Tidal current power sites in the Northwest Territories.

Site Name	Latitude	Longitude	Maximum Current Speed Flood	Maximum Current Speed Ebb	Mean Maximum Depth Average Current Speed	Mean Power Density	Width of Passage	Average Depth of Passage	Flow Cross- sectional Area	Mean Potential Power
	deg	deg	knot	m/s	m/s	kW/m ²	m	m	m ²	MW
Gray Strait	60.54	-64.69	6	6	2.63	2.11	6,000	550	3,307,800	6,979
Lacy/Lawson Islands	60.60	-64.62	7	7	3.06	3.35	2,750	80	223,575	749
McLelan Strait	60.35	-64.63	7	7	3.06	3.35	200	8	1,880	6
Mill IslSalisbury Isl.	63.81	-77.50	8	8	-	0.89	32,054	204	6,571,070	10,426
Mill Island-Baffin Island Nottingham Isl	64.15	-77.57	8	8	-	1.02	26,125	229	6,008,750	7,584
Ungava Salisbury Isl	62.83	-77.93	8	8	-	0.14	64,098	228	14,678,442	1,972
Nottingham Isl.	63.45	-77.41	8	8	-	0.36	22,146	147	3,277,608	1,704
Cape Enouolik	64.95	-78.33	5	5	2.19	1.22	5,000	25	142,500	174
Labrador Narrows	69.71	-82.59	6	6	2.63	2.11	1,500	100	151,950	321
Bellot Strait	72.00	-94.48	8	8	3.50	5.00	1,000	16	16,400	82
Cache Pt Channel	68.62	-113.55	5	5	2.19	1.22	6,000	10	62,400	76
James Ross Strait	66.69	-95.87	5	5	2.19	1.22	5,900	10	61,360	75
Egg Island	68.55	-97.40	7	7	3.06	3.35	750	25	19,050	64
Seahorse Point	63.83	-80.13	5	5	2.19	1.22	2,000	20	40,800	50
Nettliling Fiord	66.72	-72.83	8	8	3.50	5.00	1,700	5	9,180	46
Cardigan Strait	76.51	-90.30	3.5	3.5	1.53	0.42	6,000	15	92,400	39
Hells Gate	76.54	-89.66	3.5	3.5	1.53	0.42	5,500	15	84,700	35
Hurd Channel	66.15	-84.42	6	6	2.63	2.11	2,000	8	16,800	35
Barrow Strait	74.44	-92.87	2	2	0.88	0.08	20,000	20	408,000	32
Bathhurst Inlet	67.31	-107.88	5	5	2.19	1.22	2,000	10	20,800	25
Spence Bay	69.42	93.83	4	5	1.97	0.89	2,300	10	23,920	21
Clifton Point	69.22	-118.62	4	4	1.75	0.63	2,000	10	20,800	13
Sherman Inlet	68.12	-98.55	5	5	2.19	1.22	1,850	5	9,990	12
Flagler Bay	79.10	-75.96	4	4	1.75	0.63	1,500	8	12,600	8
Edinburgh Channel	68.47	-111.09	3	3	1.31	0.26	2,000	10	20,800	5
Franklin Lake	66.94	-95.34	5	5	2.19	1.22	800	5	4,320	5
Gibson's Cove	65.27	-75.92	6	6	2.63	2.11	430	5	2,322	5
Cape Dorchester	65.50	-77.37	6	6	2.63	2.11	400	5	2,160	5
Wager Bay Narrows	65.31	-87.74	6	7	2.84	2.68	3,600		1,440	4
Resolute Bay	74.54	-94.91	3	3	1.31	0.26	1,500	8	12,600	3
Stormness Bay	68.86	-102.61	5	5	2.19	1.22	250	10	2,600	3
Durban Harbour	67.06	-62.17	4	4	1.75	0.63	900	5	4,860	3
Cape Young	68.98	-116.98	3	3	1.31	0.26	2,000	5	10,800	3
Princess Royal Islands	73.37	-115.28	2	2	0.88	0.08	2,000	10	20,800	2

Total: 30,567

Table 15. Tidal current power sites in Nunavut.

Site Name	Latitude	Longitude	Maximum Current Speed Flood	Maximum Current Speed Ebb	Mean Maximum Depth Average Current Speed	Mean Power Density	Width of Passage	Average Depth of Passage	Flow Cross- sectional Area	Mean Potential Power
	deg	deg	knot	m/s	m/s	kW/m²	m	m	m²	MW
Smoky Narrows	58.92	-69.27	12	12	5.25	16.88	1,500	55	92,400	1,560
Algernine Narrows	58.79	-69.60	10	10	4.38	9.77	2,000	59	130,400	1,274
Riviere George Entrance Riviere Arnaud (Payne)	58.76	-66.12	8	8	3.50	5.00	3,000	35	125,100	626
Entrance	59.98	-69.84	9	9	3.94	7.12	2,300	9	32,200	229
Koksoak Entrance	58.52	-68.17	6	6	2.63	2.11	2,000	40	92,400	195
Nakertok Narrows	60.00	-70.27	9	9	3.94	7.12	1,100	6	12,100	86
Mikitok Narrows	60.00	-70.27	9	9	3.94	7.12	700	8	9,590	68
Koksoak Narrows	58.18	-68.32	5	8.5	2.95	3.00	400	30	14,400	43
Riviere George Narrows	58.68	66.00	6	6	2.63	2.11	600	12	11,220	24
McLean Strait	60.35	-64.63	7	7	3.06	3.35	200	8	2,200	7
Passage de lle aux Coudre	47.43	-70.43	5	6	2.41	1.63	1,700	30	56,100	91
Travers de Saint-Roch	47.36	-70.26	7.5	7.5	3.28	4.12	500	15	9,000	37
Traverse du Millieu	47.33	-70.38	4	5	1.97	0.89	2,000	10	26,000	23
Havre St Pierre	50.23	-63.60	3	3	1.31	0.26	270	20	5,670	1
Cap Gaspe	48.70	-64.08	3	3	1.31	0.26	2,400	20	50,400	13
Pointe Heath	49.06	-61.59	2	2	0.88	0.08	3,900	29	117,780	9

Total: 4,288

Site Name	Latitude	Longitude	Maximum Current Speed Flood	Maximum Current Speed Ebb	Mean Maximum Depth Average Current Speed	Mean Power Density	Width of Passage	Average Depth of Passage	Flow Cross- sectional Area	Mean Potential Power
	deg	deg	knot	m/s	m/s	kW/m ²	m	m	m²	MW
Strait of Belle Isle	51.45	-56.68			-	0.20	26,069	49	1,298,236	373
Forteau	51.41	-56.95	4	5	1.97	0.89	1,500	35	53,700	48
Pointe Armour	51.45	-56.86	4	5	1.97	0.89	1,500	35	53,700	48
Cape Bauld	51.64	-55.43	2	2	0.88	0.08	2,000	15	31,600	2
Cape Anguille	47.90	-59.41	3	3	1.31	0.26	700	10	7,700	2
Stearing Island	49.93	-57.81	2	2	0.88	0.08	1,650	13	23,100	2
Cape St George	48.46	-59.28	3	3	1.31	0.26	200	18	3,800	1
Pass Island Tickle	47.50	-56.19	4	3	1.53	0.42	300	7	2,490	1
Placentia Gut	47.25	-53.96	9	9	3.94	7.12	80	3	336	2
Pike Run	54.10	-58.36	6	5	2.41	1.63	580	45	26,680	43
Cul-de-Sac	54.06	-58.56	6	5	2.41	1.63	360	14	5,400	9
Cap Islet	56.55	-61.45	4	5	1.97	0.89	610	9	6,100	5
Goose Bay Narrows	54.43	-59.99	3	5	1.75	0.63	813	7	6,504	4
The Narrows	53.67	-57.07	3.5	3.5	1.53	0.42	260	18	4,940	2
Bridges Passage	56.45	-61.56	4	4	1.75	0.63	280	5	1,680	1

Total: 544

Table 17. Tidal current power sites in Newfoundland and Labrador.

Site Name	Latitude	Longitude	Maximum Current Speed Flood	Maximum Current Speed Ebb	Mean Maximum Depth Average Current Speed	Mean Power Density	Width of Passage	Average Depth of Passage	Flow Cross- sectional Area	Mean Potential Power
	deg	deg	knot	m/s	m/s	kW/m ²	m	m	m²	MW
Savage Harbour/Dulse										
Rocks	45.64	-62.45	5	5	2.19	1.22	160	6	1,184	1
Minas Basin	45.35	-64.40	7.5	7.5	3.28	6.04	4,376	56	274,113	1,903
Northwest Ledge	44.30	-66.42	4	4	1.75	0.63	5,334	18	117,348	73
The Hospital	43.44	-66.00	4	4	1.75	0.63	3,600	18	79,200	50
Petit Passage	44.39	-66.21	7	7	3.06	3.35	335	18	7,035	24
Digby Gut	44.68	-65.76	5	5	2.19	1.22	573	25	16,904	21
Grand Passage	44.28	-66.34	6	6	2.63	2.11	380	16	7,220	15
Trinity Ledge	44.00	-66.29	2.5	2.5	1.09	0.15	2,520	14	42,840	7
Ellewoods Channel	43.66	-66.05	4	4	1.75	0.63	350	4	2,275	1
Cape Sable	43.35	-65.66	4	4	1.75	0.63	2,070	10	23,805	15
Baccaro Point	43.44	-65.47	3	3	1.31	0.26	670	10	7,504	2
Great Bras d'Or										
(entrance)	46.29	-60.41	5	5	2.19	1.22	320	8	2,832	3
Barra Strait	45.96	-60.80	3	3	1.31	0.26	455	20	9,487	3
Flint Island	46.17	-59.79	2.5	3	1.20	0.20	500	20	10,425	2
St Ann's Harbour	46.29	-60.41	5	5	2.19	1.22	155	10	1,682	2

Total: 2,122

Table 18. Tidal current power sites in Nova	Scotia.
---	---------

Site Name	Latitude	Longitude	Maximum Current Speed Flood	Maximum Current Speed Ebb	Mean Maximum Depth Average Current Speed	Mean Power Density	Width of Passage	Average Depth of Passage	Flow Cross- sectional Area	Mean Potential Power
	deg	deg	knot	m/s	m/s	kW/m ²	m	m	m ²	MW
East Point/Milne Bank	46.41	-61.94	2.5	2.5	1.09	0.15	7,100	13	102,240	16
Indian Rocks	45.93	-62.80	3	3	1.31	0.26	2,500	15	40,000	11
WestReef/West Spit	46.67	-64.48	2.5	2.5	1.09	0.15	3,790	8	35,626	5
Charlottetown Harbour										
Entrance	46.20	-63.13	2.5	2.5	1.09	0.15	490	15	8,232	1
									Total:	33

Table 19. Tidal current power sites in Prince Edward Island.

Site Name	Latitude	Longitude	Maximum Current Speed Flood	Maximum Current Speed Ebb	Mean Maximum Depth Average Current Speed	Mean Power Density	Width of Passage	Average Depth of Passage	Flow Cross- sectional Area	Mean Potential Power
	deg	deg	knot	m/s	m/s	kW/m ²	m	m	m²	MW
Miramichi Bay Islands	47.15	-65.04	3.5	3.5	1.53	0.42	1,920	5	10,944	5
Clarks Ground	44.59	-66.64	6	6	2.63	2.11	4,092	22	102,300	216
Devils Half Acre	44.54	-66.69	6	6	2.63	2.11	2,133	18	44,793	95
Old Sow	44.92	-66.99	6	6	2.63	2.11	625	60	39,375	83
Head Harbour Passage 1	44.95	-66.93	5	5	2.19	1.22	890	65	60,520	74
Gran Manan Channel	44.78	-66.86	2.5	2	0.98	0.11	5,446	80	452,018	50
Quoddy River	44.96	-66.95	4.5	4	1.86	0.75	1,350	28	41,850	31
Reversing Falls	45.26	-66.09	12	12	5.25	16.88	90	15	1,746	29
Cumberland Basin	45.74	-64.47	4	5	1.97	0.89	2,125	6	26,988	24
Letete Passage	45.05	-66.92	5	5	2.19	1.22	508	25	14,224	17
Shepody Bay	45.87	-64.57	3	4	1.53	0.42	1,400	3	12,740	5
Lubec Narrows	44.86	-66.98	6	8	3.06	3.35	180	3	1,080	4
Little Letete Passage	45.03	-66.93	5	5	2.19	1.22	150	6	1,350	2
Devils Head/St Stephen	45.16	-67.18	3	4	1.53	0.42	440	3	2,640	1

Total: 636

Table 20. Tidal current power sites in New Brunswick.

Figure 76. Leading tidal current power sites, Canada.

Figure 77. Leading tidal current power sites, Pacific coast.

Figure 78. Leading tidal current power sites, Arctic Archipelago.

Figure 79. Leading tidal current power sites, Atlantic coast.

5. Recommendations for Future Work

Several recommendations for further studies are outlined in what follows. A proposal to conduct these studies has been submitted to Natural Resources Canada for consideration.

5.1. Assessment of the Wave Energy Resource

The wave power along a coast can vary considerably due to sheltering from islands and the interaction between the waves and the local bathymetry. Natural physical processes such as shoaling, refraction and diffraction will create pronounced local variations in wave conditions and energy potential close to shore, particularly in regions where the bathymetry is irregular. These processes can create "hot spots" where the wave energy is significantly greater than (easily more than double) the local average. These hot spots represent prime sites for wave power projects.

The wave energy resources in deep water off Canada's Atlantic and Pacific coasts have been quantified and mapped, however the distribution of wave energy along the coast above the 200 m depth contour remains poorly defined. It is recommended that new wave modelling studies be conducted to quantify and map the wave energy climate above the 200 m contour along the portion of Canada's shoreline where the potential for wave energy extraction is greatest. Third generation shallow water wave transformation models, such as SWAN (Simulating Waves Nearshore), should be applied in these studies. Initially, these studies should be focused on the following coastal areas:

- western shore of the Queen Charlotte Islands;
- western shore of Vancouver Island;
- south-eastern Newfoundland including the Avalon peninsula; and
- south-eastern shore of Cape Breton.

5.2. Assessment of the Tidal Current Energy Resource

Results from numerous existing tide models have been analysed to create maps of tidal currents and the kinetic energy contained therein. In many regions, the resolution of the available model grids is insufficient to obtain reliable predictions of tidal flows near the coast and particularly at high-energy sites. New modelling efforts with refined model grids are required in order to improve the accuracy and detail of the tidal current maps, and the resource estimates derived from them. It is recommended that near-term modelling studies should concentrate on three specific areas:

- Bay of Fundy, Nova Scotia;
- Georgia and Johnstone Straits, British Columbia; and
- Hudson's Strait and Ungava Bay, Québec and Nunavut.

The objective of these modelling studies should be to improve the definition of the tidal current resources available, and to investigate the impact of energy extraction on the tidal flows throughout the region (both levels and currents).

5.3. Digital Atlas of Marine Renewable Energy Resources

The concept of a digital atlas of ocean renewable energy resources is outlined in Chapter 2 of this report. The proposed atlas will feature a geo-referenced database containing tidal current, wave climate and wind data and meta-data for all Canadian waters, integrated with an interactive viewer/mapper and wrapped in a user-friendly interface. The proposed atlas will also include selected climatic, socio-economic and environmental variables relevant to the selection and evaluation of sites for ocean energy projects. The digital atlas will be equipped with a toolbox of statistical, temporal and spatial analysis tools for analysing and interpreting the data. The atlas will be web-enabled, like the Canadian Wind Energy Atlas, so that it can be accessed by all.

The initial content for the atlas will include the results presented in Chapters and 4 of this report, supplemented by results from new modelling studies conducted to improve the detail and spatial coverage of the initial resource assessments (described above), and by data provided by future collaborators.

Acknowledgements

The author wishes to thank Michael Tarbotton and Max Larson of Triton Consultants for their many contributions to this work. The hard work and dedication of my colleague Ji Zhang is also acknowledged with sincere gratitude. The author also thanks the following people for supporting and contributing to this study:

- Gouri Bhuyan, Powertech Labs
- Rob Brandon, CTEC, Natural Resources Canada
- Chris Campbell, Ocean Renewable Energy Group (OREG)
- Guoqi Han, NAFC, Fisheries and Oceans Canada
- John Loder, BIO, Fisheries and Oceans Canada
- Marielle Nobert, OERD, Natural Resources Canada
- Val Swail, MSC, Environment Canada
- members of the Federal Ocean Energy Working Group (FOEWG)

The financial support of the Technology and Innovation Research and Development Program, Natural Resources Canada, is gratefully acknowledged.

6. References and Bibliography

- ABP Marine Environmental Research Ltd. (ABP, 2004) *Atlas of UK Marine Renewable Energy Resources: Technical Report*, Report No. R.1106 prepared for the UK Department of Trade and Industry.
- Allievi, A. and Bhuyan, G. (1994) Assessment of Wave Energy Resources for the West Coast of Canada. Department of Mechanical Engineering, University of British Columbia, Vancouver.

- Baird, W.F. and Mogridge, G.R. (1976) *Estimates of the Power of Wind-Generated Water Waves at Some Canadian Coastal Locations*. NRC Hydraulics Laboratory Report LTR-HY-53.
- Briand, M.-H. and Claisse, M. (2004) *Potential for Renewable Energy Development in Nunavik, Canada*. Proc. 2004 Water Power Conference, Austin, Texas, U.S.A.
- Cornett, A.M. (2005) *Towards a Canadian Atlas of Renewable Ocean Energy*. Proc. Canadian Coastal Conference 2005. Dartmouth, N.S., November, 2005.
- Dupont, Frédéric, Charles G. Hannah and David Greenberg. 2005. *Modelling the Sea Level in the Upper Bay of Fundy*. Atmos.-Ocean. 43(1), 33-47
- Dupont, F., C.G. Hannah, D.A. Greenberg, J.Y. Cherniawsky and C.E. Naimie. 2002. Modelling System for Tides for the Northwest Atlantic Coastal Ocean. Can. Tech. Rep. Hydrogr. Ocean Sci. 221: vii + 72pp.
- Dupont, F., B. Petrie, J. Chaffey. 2003. *Modelling the Tides of the Bras d'Or Lakes*. Can. Tech. Rep. Hydrogr. Ocean Sci. 230: viii + 53pp.
- Dunphy, M., F. Dupont, C. Hannah, D. Greenberg. 2005. Validation of a Modeling System for Tides in the Canadian Arctic Archipelago. Can. Tech. Rep. Hydrogr. Ocean Sci. XXX: vi + 70pp.
- Electrical Power Research Institute (EPRI, 2004) *Offshore Wave Energy Conversion Devices*. E2I-EPRI Report No. WP-004-US, available at <u>www.epri.com</u>.
- Electrical Power Research Institute (EPRI, 2005). Offshore Wave Power Feasibility Project Project Definition Study, Final Summary Report E2I-EPRI Report WP-009-US, available at <u>www.epri.com</u>.
- Electrical Power Research Institute (EPRI, 2005). *Tidal In Stream Energy Conversion (TISEC) Devices – Survey and Characterization*. E2I-EPRI Report TP-004-NA, available at <u>www.epri.com</u>.
- Foreman, M.G.G., W.R. Crawford, J.Y. Cherniawsky, R.F. Henry and M.R. Tarbotton. 2000. A high-resolution assimilating tidal model for the northeast Pacific Ocean. Journal of Geophysical Research. 105: 28,629-28,652.
- Forrester, W.D. 1983. *Canadian Tidal Manual*. Canadian Hydrographic Service Publication P-252.
- Garrett, C., P. Cummins. 2004. Generating Power from Tidal Currents. J. Waterways, Port, Coastal & Ocean Engineering. 130(3) ASCE.
- Hagerman, G. (2001) Southern New England Wave Energy Resource Potential Proc. Building Energy 2001, Tufts University, Boston, MA, March 2001.
- Han, G., J.W. Loder. 2003. *Three-dimensional seasonal-mean circulation and hydrography on the eastern Scotian Shelf*. J. Geophysical Research, 108(C5), 3136.

- Kliem, Nicolai and David A. Greenberg. 2003. *Diagnostic Simulations of the Summer Circulation in the Canadian Arctic Archipelago*. Atmos.-Ocean. 41.
- Mansard, E.P.D. (1978) *Different Methods of Evaluating Wave Power in a Random Seastate: A Comparative Study*. NRC Hydraulics Laboratory Report HY-97, Ottawa.
- Mogridge, G.R. (1980) A Review of Wave Power Technology NRC Hydraulics Laboratory Report LTR-HY-74
- Mollison, D. (1986) *Wave Climate and the Wave Power Resource* in Hydrodynamics of Ocean-Wave Energy Utilization, eds. D.V. Evans and A.F. de O. Falcao, Springer-Verlag, New York.
- Pontes, M.T. (1998) Assessing the European Wave Energy Resource. J. Offshore Mechanics and Arctic Engineering. Vol. 120, No. 4, pp. 226-231.
- Pontes, M.T. and A. Falcao (2001) *Ocean Energies: Resources and Utilisation*. Proc. 18th World Energy Conference, Buenos Aires, Argentina, October 2001.
- Pontes, M.T., R. Aguiar and H.O. Pires (2003) A Nearshore Wave Energy Atlas for Portugal. Proc. 22nd Int. Conf. on Offshore Mechanics and Arctic Engineering, Cancun, Mexico, June 2003.
- Saucier, F.J., F. Roy, D. Gilbert, P. Pellerin and H. Ritchie. 2003. The Formation and Circulation Processes of Water Masses in the Gulf of St. Lawrence, Canada. J. Geophysical Research, 108(C8), 3269
- Swail, V.R., E.A. Ceccacci, and A.T. Cox (2000) The AES40 North Atlantic Wave Reanalysis: Validation and Climate Assessment. Sixth International Workshop on Wave Hindcasting and Forecasting, Monterey, California.
- Swail, V.R., V.J. Cardone and A.T. Cox (1998) A Long Term North Atlantic Wave Hindcast. Proc. 5th International Workshop on Wave Hindcasting and Forecasting, Melbourne, FL, January 1998.
- Tolman, H.L. (2002) User Manual and System Documentation for WAVEWATCH-III version 2.22. NOAA-NCEP-MMAB Technical Note 222. U.S. Department of Commerce, Washington, D.C.
- Triton Consultants (2002) *Green Energy Study for British Columbia Tidal Current Energy*. Report prepared for B.C. Hydro.
- Triton Consultants (2006) *Potential Tidal Current Energy Resources Analysis Backgroud.* Report prepared for NRC-Canadian Hydraulics Centre.
- WaveNet (2003) *Results from the Work of the European Thematic Network on Wave Energy*.Report prepared for the Energy, Environment and Sustainable Development Programme of the European Union.

A-1

Canada Ocean Energy Atlas (Phase 1)

Potential Tidal Current Energy Resources

Analysis Background

May 2006

Prepared For: Canadian Hydraulics Centre, Ottawa, Ontario as part of a contract for Natural Resources Canada

> Prepared By: Michael Tarbotton and Max Larson **Triton Consultants Ltd.** Vancouver, BC

TRITON CONSULTANTS LTD.

TABLE OF CONTENTS

1.	INTRODUCTION	1
2.	DATA SOURCES	2
2.1	Nautical and Bathymetric Information	2
2.2	Tidal Constituent Database	3
2.3	Tidal Modelling	4
3.	ANALYSIS METHODOLOGY	9
3.1	Tides and Tidal Currents in Canada	9
3.2	Theoretical Basis	10
3.3	Practical Methodology	13
4.	SELECTED STUDY RESULTS	15
4.1	Potential Tidal Current Energy Summary Tables	15
4.2	Tidal Resource Maps	21
4.3	Potential Tidal Current Energy Density Maps	26
5.	SUMMARY AND RECOMMENDATIONS FOR FURTHER STUDIES	30
5.1	Summary	30
5.2	Recommendations for Future Studies	30
5.2.1	Modelling	30
5.2.2	Mapping	30
6.	REFERENCES	31

Appendix A – CEAPack Description

Appendix B - Hydrodynamic Model Tide2D

LIST OF FIGURES

Figure 1: Tidal Stations in Canada	4
Figure 2: Hudson Bay Tidal Model Region (depths in metres)	6
Figure 3: Gulf of St. Lawrence Tidal Model Region (depths in metres)	6
Figure 4: Bay of Fundy North Tidal Model Region (depths in metres)	7
Figure 5: British Columbia Coast South Tidal Model Region (depths in metres)	7
Figure 6: Queen Charlotte Islands Tidal Model Region (depths in metres)	8
Figure 7: Definition Sketch	11
Figure 8: Sensitivity of Power to Current Speed	12
Figure 9: Canada Potential Tidal Current Resource Sites	22
Figure 10: Potential Tidal Current Resource Sites - Pacific Coast	23
Figure 11: Potential Tidal Current Resource Sites - Hudson's Strait and Ungava Bay	24
Figure 12: Potential Tidal Current Resource Sites - Atlantic Coast	25
Figure 13: Power Density - Pacific Coast	26
Figure 14: Power Density - Hudson's Strait	27
Figure 15: Power Density - Atlantic Coast	28
Figure 16: Power Density - Bay of Fundy North	29

LIST OF TABLES

Table 1: Canadian Sailing Directions	3
Table 2: Canadian Tide and Current Tables	3
Table 3: Tidal Models	5
Table 4: Data Assembly	14
Table 5: Canada Potential Tidal Current Energy by Province	15
Table 6: Canada Potential Tidal Current Energy by Region	15
Table 7: Canada Tidal Current Power Sites (50 largest sites)	16
Table 8: Canada Potential Tidal Current Power Sites (50 sites ranked by power d kW/m ²)	ensity 19

1. INTRODUCTION

This report provides an analysis background to a preliminary tidal current resource inventory for Canadian waters completed for Phase 1 of the Canada Ocean Energy Atlas Project.

The estimated tidal current energy for Canada is the total potential resource available in tidal flows. The estimates are "potential" resources NOT "economically realisable" resources. At this early stage of the Ocean Atlas development, energy calculations are based on preliminary estimates of existing tidal flows and no consideration has been given to the following factors:

- Environmental Impacts
- Technological developments and limitations in tidal power extraction
- Climate related factors (e.g., ice, global climate change)
- Site location versus power grid accessibility and power demand
- Hydrogen economy developments
- The effect of potential energy extraction schemes on existing flow conditions
- Economic factors.

Mean vs Rated Site and Turbine Capacity

There may be some potential for confusion when comparing the power values referenced in this study with those of conventional thermal or hydroelectric generating facilities with which the public is most familiar. With conventional power generation, reference is usually made to the rated power of the facility which is the value stamped on the manufacturer's nameplate. It is generally the goal of conventional facility owners to operate the facility near this rated capacity. Moreover, the day-to-day variability of conventional energy resources is relatively minor which allows these facilities to operate near their rated capacity for relatively continuous periods of time. This means that rated capacity is generally a good first approximation to the actual power production of a conventional power plant.

For wind power it is often the case that wind farm capacities are quoted in turbine rated capacity rather than the more realistic mean annual power potential. Wind power is much more temporally variable and uncertain than tidal power, but both these sources of renewable energy peak for quite short periods.

In the case of tidal current energy extraction, the resource potential goes to zero two to four times per day and reaches its peak annual value for only a few hours per year. For this reason, it is much more instructive to speak of *mean power* in the context of tidal power as such a definition integrates the effect of the highly variable daily and annual variation of the resource. The Mean Potential Power detailed in this report can be converted to megaWatt.hours per year by multiplying the mean power (MW) by 8,760 (the number of hours in a year).

2. DATA SOURCES

Triton has undertaken a preliminary tidal resource inventory for Canadian marine waters including the East and West Coasts and Arctic Canada. This inventory was based on a variety of data sources including:

- Canadian Sailing Directions;
- Nautical Charts and Tide Books;
- Tide and tidal current constituent data;
- Numerical Tidal modelling data

Data from these data sources has been assembled into a database and documented in spreadsheet tables and in the GIS program Manifold (<u>www.manifold.net</u>) for data viewing and interpretation by the study team.

2.1 NAUTICAL AND BATHYMETRIC INFORMATION

Nautical data including Canadian Sailing Directions and tide books were purchased for the whole of Canada and reviewed in detail. In addition, all the available electronic nautical charts, a total of 489 charts, were purchased from Nautical Data International (NDI), St. John's, Newfoundland in raster format and areas of potential tidal current resource were identified.

The Canadian Hydrographic Service has a total of 950 nautical charts for all regions of Canada. Deducting approximately 250 charts for the Great Lakes, St. Lawrence River and Mackenzie River systems and interior British Columbia, there are about 700 charts relevant to this study. Therefore, 70% of Canadian (saltwater) Marine Charts are presently available in electronic raster format. A majority of the non-electronic charts are for areas such as Hudson Bay and Strait, Ungava Bay and the Arctic Regions.

Paper copies of the non-electronic charts were reviewed from Triton's own chart database and at the map library at the University of British Columbia.

Table 1 and Table 2 below show the Canadian Sailing Directions and Tide and Current books used for this study.

Number	Description
P100	Arctic Canada, Vol. 1, 1994
P102	Arctic Canada, Vol. 2, 1985
P104	Arctic Canada, Vol. 3, 1994
P112	Labrador & Hudson Bay, 1988
P118	BC (S. Portion), Vol. 1, 2004
P120	Great Slave Lake & Mackenzie River, 1989
P122	Gulf of St. Lawrence, 1992
ATL100E	Atlantic Coast, General Information 1992
ATL101E	Newfoundland, Northeast & East Coasts
ATL102E	Newfoundland, East and South Coasts
ATL103E	Newfoundland, Southwest Coast
ATL104E	Cape North to Cape Canso
ATL105E	Cape Canso to Cape Sable
ATL106E	Gulf of Maine and Bay of Fundy, 2001
ATL107E	St. John River, 1994
ATL110E	St. Lawrence River, Cap Whittle/
ATL111E	St. Lawrence River/Île Verte to Québec, 1999
ATL112E	St. Lawrence River/Cap-Rouge to Montréal
ATL120E	Labrador, Camp Islands to Hamilton Inlet
ATL121E	Labrador, Hamilton Inlet to Cape Chidley
Volume 1 Pacific	British Columbia South 1987
Volume 11 Pacific	British Columbia North 1987

Table 1: Canadian Sailing Directions

Table 2: Canadian	Tide and	Current	Tables
-------------------	----------	---------	--------

Volume	Description
Vol 1	Atlantic Coast and Bay of Fundy / Côte de l'Atlantique et baie de Fundy, 2006
Vol 2	Gulf of St. Lawrence / Golfe du Saint-Laurent, 2006
Vol 3	St. Lawrence and Saguenay Rivers / Fleuve Saint-Laurent et rivière Saguenay, 2006
Vol 4	Arctic and Hudson Bay / L'Arctique et la baie d'Hudson, 2006
Vol 5	Juan de Fuca Strait & Strait of Georgia / Détroits de Juan de Fuca et de Georgia, 2006
Vol 6	Discovery Passage & West Coast of Vancouver Island / Discovery Passage et côte Ouest de l'île de Vancouver, 2006
Vol 7	Queen Charlotte Sound to Dixon Entrance / Queen Charlotte Sound à Dixon Entrance, 2006

2.2 TIDAL CONSTITUENT DATABASE

The Canadian Hydrographic Service maintains a database of more than 1030 tidal station constituent files. These tidal (height) constituent files are based on recorded water levels and are used to calculate the tidal heights each year for the CHS Tide and Currents Tables. Because of the practical difficulties of measuring tidal currents, the number of verified tidal current stations available for Canada is quite small (probably less than 50). The Pacific Coast is by far the best serviced area in the country, with a total of 24 stations with current constituents. On the Atlantic Coast there are only two current sites in the Tide and Current tables and these sites are in low current areas of the Bay of Fundy.

It is understood from scientists at the Bedford Institute of Oceanography that many current measurements have been recorded in the Atlantic Region but these have never been assembled into a verified database. CHS headquarters in Ottawa is presently in discussions with their regional offices to agree to a framework for assembling all the current measurement data for Canada.

Figure 1 shows the location of tidal height stations in Canada. The colour of the "dots" indicates the amplitude of the semi-diurnal (twice a day) M2 tidal constituent which gives a good indication of relative tidal range except in places like Juan de Fuca Strait and the Strait of Georgia (Pacific Coast) where the diurnal (once a day) component is also important.

A general overview of the physics of tides and tidal constituents is given in Section 3.1 for reference.

Figure 1: Tidal Stations in Canada

2.3 TIDAL MODELLING

Data from numerical tidal models of Canadian Waters was used to provide additional information for the tidal current power assessment. The finite element models used by Triton for this study are shown in Table 3.

Model Region	Model Grid Source	Number of Model Calculation Nodes	Notes
British Columbia South	Triton & IOS*	132,000	Model run for this study
Queen Charlotte Islands	Triton & IOS*	7,600	Model run for this study
Hudson's Bay Region	Triton & BIO*	45,000	Model run for this study
Gulf of St. Lawrence	Triton & PWGSC*	7,800	Model run for this study
North West Atlantic	BIO/WebTide	17,100	Model results provided by BIO
Arctic	BIO/WebTide	17,400	Model results provided by BIO
Bay of Fundy North	BIO/WebTide	75,000	Model results provided by BIO

Table 3: Tidal Models

*original source of model grid; grid further developed and expanded by Triton.

IOS – Institute of Ocean Sciences, Sidney, BC

BIO – Bedford Institute of Oceanography, Bedford, N.S.

Triton's finite element harmonic tidal model Tide2D (see appendix for Tide2D data sheet) was used to provide tidal height and current velocities data at each node in the model domains for a varying number of tidal constituents on the model driving boundary.

Purpose-designed code was written to convert Fundy format (BIO) results to Trigrid (IOS) and to compute for both formats the mean tidal power from the calculated current constituents at each node in the model domains. This latter analysis is equivalent to doing a current prediction for each model node for a full year. Mean current power was then estimated from the indicative formula average $\sum (\frac{1}{2} \times \rho \times U^3)$. These conversion codes were implemented in Triton's in-house Coastal Engineering Analysis Package (CEAPack) which is described in the appendix.

The model results (including tide height, current and mean power) were input via CEAPack, into Tecplot (<u>www.tecplot.com</u>) for visualization and analysis. Tecplot allows the user to extract data along cross-section lines. This method was used to estimate potential tidal power at locations where no accurate current measurements are presently available (e.g., Hudson's Strait, Minas Basin and Discovery Pass).

Figure 2 through Figure 6 show the model domains for a selection of tidal models used for this study with contoured depths in metres.

Figure 2: Hudson Bay Tidal Model Region (depths in metres)

Figure 3: Gulf of St. Lawrence Tidal Model Region (depths in metres)

Figure 4: Bay of Fundy North Tidal Model Region (depths in metres)

Figure 5: British Columbia Coast South Tidal Model Region (depths in metres)

Figure 6: Queen Charlotte Islands Tidal Model Region (depths in metres)

3. ANALYSIS METHODOLOGY

3.1 TIDES AND TIDAL CURRENTS IN CANADA

Tidal current energy is derived from the flow of coastal ocean waters in response to the tides. A background understanding of tides is helpful in understanding this report, therefore a brief description is included below.

Tides and tidal currents are generated by gravitational forces of the sun and moon on the ocean waters of the rotating earth. Because of its proximity to the earth, the moon exerts roughly twice the tide-raising force of the sun. Tides repeat themselves once every 24 hrs and 50 minutes or the lunar day, which is the time it takes a point on the earth to rotate back to the same position relative to the moon during each daily revolution.

The sun's and moon's gravitational forces creates two "bulges" in the earths ocean waters one directly under or closest to the moon and other on the opposite side of the earth. These "bulges" are the two tides a day observed in many places in the world. Unfortunately, this simple concept is complicated by the fact that the earth's axis is tilted at 22.5 degrees to the moons orbit – the two bulges in the ocean are not equal unless the moon is over the equator. This difference in tide height between the two daily tides is called the diurnal inequality or declinational tides and they repeat on a 14 day cycle as the moon rotates around the earth.

Spring and neap tides have been known for many centuries. Spring tides occur at the time of new or full moon when the sun and moon's gravitational pull is aligned. These tides occur at a 15 day cycle and the combination of this cycle and that of the 14 day declinational tidal cycle explains some of the variability of the tides through the months of the year. There are more than a hundred harmonic constituents or cyclic components of the tide each with a different cycle time. These constituents combine so that tides completely repeat themselves every 18.6 years.

Tides move as shallow water waves in ocean and coastal waters. Despite its name a shallow water waves can exist in any depth of water. Their main characteristic is that the whole depth of water moves as the wave passes. This is unlike wind waves which, except in very shallow water near shore, only move the top few tens of metres of the water column. Shallow water waves move at a celerity related to the square root of the water depth which in the open sea can be several hundred kilometres per hour. In the open ocean tides are small, rarely exceeding 0.5 m. However, as the tidal wave enters coastal waters it slows down, shoals (increases in height) and is reflected in coastal basins. This explains how a small deep ocean tide can result in 15 m tides in Minas Basin (Bay of Fundy), 8 m tides at Prince Rupert (Pacific Coast) and 11 m tides in Ungava Bay (Leaf Bay/Lac aux Feuilles) and Iqualuit.

As discussed above, the total tidal wave is made up of components (constituents) with different harmonic periods and amplitudes. The principal semi-diurnal or twice-daily components are M2 (moon, twice daily) and S2 (sun, twice daily) and the principal diurnal or once-daily components are K1 and O1. Like all diurnal components, the K1 and O1 result from the declination of the moon relative to the earth during the monthly tidal cycle. In coastal waters, these different components may resonate in the bays and straits along the coast depending on their wavelength determined by water depth and the size and shape of the basin. This process is much like the slopping of water in a bathtub. For example, the Bay of Fundy is perfectly "tuned" in terms of water depth and shape to the semi-diurnal tide entering at its mouth. In BC, the small diurnal tides at Victoria and the increasing tide range

as one moves north in Strait of Georgia result from the "tuning out" of the M2 tide in Juan de Fuca Strait and the resonance or tuning of the M2 tide in Strait of Georgia respectively.

Tidal currents result from the passage of the tidal wave. Contrary to popular belief, large tidal currents do not necessarily require a large tidal range. Some of the largest tidal flows in the world occur between the islands on the east side of the Philippines where the tidal range is small but the tide is high in the Pacific at the same time that the tide is low within the Philippine Islands. In technical terms, this is described as the two tides being 180 degrees (or half a cycle) out of phase; the result is very large tidal currents.

Another factor that impacts the magnitude of tidal currents is the presence of narrow passages; these passages result in a narrowing and concentration of tidal flow. However, the flow through a passage is constrained by the loss of energy due to friction. If this loss exceeds a certain value the flow will start to reduce and, in the case of a tidal inlet, (e.g., Minas Channel, NS and Nakwakto Rapids, BC), the tidal range and resulting flows are reduced. There is clearly a limit to the energy that can be extracted, either by nature (in friction) or harnessed (with a tidal power plant).

In British Columbia, some of the highest velocity tidal current flows in Canada occur through the passages between Strait of Georgia and Johnstone Strait. The tidal range is moderate (5 m), but the tides from the Pacific through Johnstone Strait are roughly 180 degrees out of phase with the tides in Strait of Georgia entering south of Vancouver Island.

From a tidal current perspective, it is also important to understand that semi-diurnal tides produce twice the current of the diurnal tide of the same height. This is because the semidiurnal tide rises in half the time of the equivalent diurnal tide. This is particularly important in British Columbia where many of the potential tidal current power sites are located in areas where the diurnal tide component is strong. On the other coasts of Canada (Arctic and Atlantic), the semi-diurnal tidal component typically dominates the tidal regime (see Section 3.3)

3.2 THEORETICAL BASIS

In concept, tidal current energy may be viewed as being extracted directly from the kinetic energy of a tidal stream, or as being extracted from the potential¹ energy of impounded tidal water. In reality, the two are closely related since the extraction of kinetic energy from a tidal stream increases the slope of the hydraulic grade line yielding "partially impounded" water on alternating ends of the tidal channel. Figure 7 shows a hypothetical tidal site that will be used to describe the approach followed in the assessment of tidal stream energy.

¹ Potential (energy) is used here in its technical meaning of energy resulting from vertical position such as tidal height. Elsewhere in this report the common meaning of "latent" is used.

Figure 7: Definition Sketch

Location A is representative of those locations typically described by the Canadian Hydrographic Service as "narrows" or "tidal rapids" which are critical to marine navigation. For this reason, information pertaining to these areas was used as a primary basis of the overall assessment of Canadian tidal resources.

For the example shown, the flood/ebb maximum currents in the narrows peak at 12 knots/9 knots a few times per year. It is at this location that the theoretical power (energy flux) across the channel cross section is computed and tabulated for potential sites throughout Canada. The theoretical instantaneous power $P_{cross \ section}$ (W) in a flow cross-section is given by:

$$P_{crosssection} = \frac{1}{2} \rho A_{crosssection} U^3$$

where ρ is the density of water (kg/m³), A_{cross section} is the cross sectional area (m²), and U is the instantaneous current velocity (m/s). The average value of this parameter throughout the year yields the mean theoretical power at each site considered.

Figure 8 shows the sensitivity of the power calculation to the current speed selected.

Figure 8: Sensitivity of Power to Current Speed

Recent theoretical work by Garrett, Cummins and others at the University of Victoria and the Institute of Ocean Sciences, Sidney, BC, has shown that the kinetic energy approach (U³) described above may have some limitations in a number of tidal current flows such as tidal inlets and tidal passages. This work is described in two papers by Dr. Chris Garrett and Dr. Patrick Cummins (Garrett, 2004; Garrett, 2005). The authors (with help from Dr. Mike Foreman and Dr. Graig Sutherland at IOS) continue to validate their theoretical approach by using a tidal model of Discovery Passage/Johnstone Strait, BC The results of this modelling work will be published in the near future. (pers. comm. Mike Foreman).

A similar modelling approach was used by Triton for the BC Hydro Green Energy Study (Triton, 2002) to investigate the probable magnitude of the extractable tidal energy in the Discovery Passage/Johnstone Strait system. This report is available at <u>www.triton.ca</u>. The results showed that 600 MW of tidal energy could be extracted from this system without significant impacts in the tidal regime in the adjacent tidal water bodies although tidal currents in Discovery Passage were reduced by about 10%. No attempts were made in this study to find the maximum extractable power available from this system. Hopefully, the continuing work of Garrett and Cummins will allow a determination of the extractable power as limited by site specific tidal dynamics.

These new theoretical and modelling studies will provide an improved understanding of the tidal dynamics of tidal current power extraction. Unfortunately, the technical data required for each site, such as detailed tidal models and tidal measurements is considerable, and its application is not appropriate for this early stage of the Canada Ocean Energy Atlas development.

It is therefore believed that theoretical mean power (based on tide stream kinetic energy) remains a reasonable preliminary benchmark to gauge the relative tidal current potential of various sites. The reader must however be aware that kinetic energy is only loosely related to the extractable power since extractable power is highly dependent on the physical characteristics of the site, local tidal dynamics and the technology applied.

3.3 PRACTICAL METHODOLOGY

The data sources used for this study are described in Section 2. The practical analysis methodology employed was as follows:

- A. Identify and locate all potential current power sites documented in the Sailing Directions and Tide and Current Tables for Canada (see Table 1 and Table 2). Estimate maximum flood and ebb current speeds.
- B. Locate these potential sites on the 489 salt water digital charts available for Canada and estimate width and depth of flow.
- C. Identify significant potential current sites not covered by digital charts, specifically Hudson's Strait, Ungava Bay and Arctic Region. Review paper chart copies (from UBC map library) and estimate width and depth of flow.
- D. Supplement chart data, particularly in remote regions, with satellite mapping data in Google Earth.
- E. For large sites with limited (or non-existent) current measurement, estimate potential stream cross-sectional tidal current power from tidal model results (see Section 2.3)

Table 4 shows, in green text, the data collected for each of the identified Canadian tidal current sites. Text in red are calculated parameters. "Column" 1 through 15 correspond to the columns in Table 7 and Table 8 (Section 4 Selected Study Results).

A total of 260 sites were identified: 190 of these sites had an estimated tidal current power potential greater than 1 MW (see Section 4).

Column	Description
<mark>1</mark>	Region
<mark>2</mark>	Province
<mark>3</mark>	Site Name
<mark>4</mark>	CHS Chart
5	Latitude of Site
6	Longitude of Site
7	CHS Current Station Number
8	Maximum Current Speed Flood (Knots) Vf
<mark>9</mark>	Maximum Current Speed Ebb (Knots) Ve
10	Mean Maximum Depth Averaged Current Speed (m/s) Umax = (Vf+Ve)/2 x 0.5148 ¹ x 0.85 ²
11	Annual <u>mean</u> power density based on the expression $\frac{1}{2} \times \frac{4}{(3\pi)} \times U^3$, where U is the annual mean peak flood and ebb current velocity equal to 0.9 and 0.7 ³ times their large tide mean depth and cross-section averaged values respectively. Currents are assumed to vary sinusoidally.
<mark>12</mark>	Representative channel width at location of maximum currents (m)
<mark>13</mark>	Representative channel depth at location of maximum currents (m)
<mark>14</mark>	Representative channel area at mean tide at location of maximum currents (m ²)
15	Mean cross sectional potential power at location of maximum currents computed from the product of the annual mean power density and the mean channel area. (MW)

Notes:

- 1. Conversion to m/s
- 2. Cross-section averaging
- 3. This factor has been used for all locations except British Columbia, where diurnal tidal currents are strong. In BC, a factor of 0.5 was used in Vancouver Island Mainland and 0.6 used in the Queen Charlotte Islands and Pacific Mainland North regions. This assumption reduces relative BC tidal current power potential compared to the remainder of the country and must be checked with detailed tidal modelling.

4. SELECTED STUDY RESULTS

4.1 POTENTIAL TIDAL CURRENT ENERGY SUMMARY TABLES

Table 5 shows the estimated mean potential tidal current energy by Provinces in Canada for sites with a mean power greater than 1 MW.

Province	Potential Tidal Current Energy (MW)	Number of Sites (-)	Average Size (MW)		
Northwest	35	4	9		
Territories					
British Columbia	4,015	89	45		
Quebec	4,288	16	268		
Nunavut	30,567	34	899		
New Brunswick	636	14	45		
PEI	33	4	8		
Nova Scotia	2,122	15	141		
Newfoundland	544	15	36		
TOTAL	42,240	191	221		

 Table 5: Canada Potential Tidal Current Energy by Province

Table 6 shows the distribution of mean potential power by Regions with Canada. Note that more than 80% of potential tidal current power is in regions presently impacted by winter ice conditions.

Region	Potential Tidal Current Energy (MW)
Vancouver Island	3,580
Mainland	
Pacific Mainland North	353
Queen Charlotte Islands	81
Arctic	1,008
Hudson Strait	29,595
Ungava	4,112
St. Lawrence River	153
Gulf of St Lawrence	537
Atlantic North	65
Atlantic South	30
Bay of Fundy	2,725
TOTAL	42.240

 Table 6: Canada Potential Tidal Current Energy by Region

Table 7 shows the 50 largest potential tidal current power sites in Canada. Table 8 shows the 50 sites in Canada with the largest Mean Power Density (MW/m^2) .

Table 7: Canada Tidal Current Power Sites (50 largest sites)

Region	Province	Site Name	Chart	Latitude	Longitude	Current Station	Max. Speed Flood (knots)	Max. Speed Ebb (knots)	Mean Max. Depth Ave. Speed (m/s)	Mean Power Density (kW/m2)	Passage Width (m)	Average Depth of Passage (m)	Flow Cross- sectional Area (m2)	Mean Potential Power (MW)
Hudson Strait	Nunavut	Mill Island-Salisbury Island	5450	63.81	-77.50		8	8		<mark>0.887</mark>	<mark>32054</mark>	<mark>204</mark>	<mark>6571070</mark>	<mark>10426</mark>
Hudson Strait	Nunavut	Mill Island-Baffin Island	5450	64.15	-77.57		8	8		<mark>1.020</mark>	<mark>26125</mark>	<mark>229</mark>	<mark>6008750</mark>	<mark>7584</mark>
Hudson Strait	Nunavut	Gray Strait	5456	60.54	-64.69		6	6	2.63	2.110	6000	550	3307800	6979
Hudson Strait	Nunavut	Nottingham Island- Ungava	5450	62.83	-77.93		8	8		<mark>0.136</mark>	<mark>64098</mark>	<mark>228</mark>	<mark>1467844</mark> 2	<mark>1972</mark>
Bay of Fundy	Nova Scotia	Minas Basin	4010	45.35	-64.40		7.5	7.5	3.28	<mark>6.036</mark>	<mark>4376</mark>	<mark>56</mark>	<mark>274113</mark>	<mark>1903</mark>
Hudson Strait	Nunavut	Salisbury Island- Nottingham Island	5450	63.45	-77.41		8	8		<mark>0.360</mark>	<mark>22146</mark>	<mark>147</mark>	<mark>3277608</mark>	<mark>1704</mark>
Ungava	Quebec	Smoky Narrows	5468	58.92	-69.27		12	12	5.25	16.880	1500	55	92400	1560
Ungava	Quebec	Algernine Narrows	5468	58.79	-69.60		10	10	4.38	9.768	2000	59	130400	1274
Vancouver Island Mainland	British Columbia	Seymour Narrows	353902	50.13	-125.35	5000	16	14	6.56	<mark>18.160</mark>	<mark>769</mark>	<mark>41</mark>	<mark>33331</mark>	<mark>786</mark>
Hudson Strait	Nunavut	Lacy/Lawson Islands	5456	60.60	-64.62		7	7	3.06	3.351	2750	80	223575	749
Ungava	Quebec	Riviere George Entrance	5335	58.76	-66.12		8	8	3.50	5.001	3000	35	125100	626
Gulf of St Lawrence	Newfoundland	Strait of Belle Isle	4020	51.45	-56.68					<mark>0.201</mark>	<mark>26069</mark>	<mark>49</mark>	<mark>1298236</mark>	<mark>373</mark>
Vancouver Island Mainland	British Columbia	N. Boundary Passage	346201	48.79	-123.01		4	4	1.75	0.498	5158	140	734949	366
Vancouver Island Mainland	British Columbia	Discovery Pass. S.	353901	50.00	-125.21		7	7	3.06	<mark>3.676</mark>	<mark>1459</mark>	<mark>42</mark>	<mark>65626</mark>	<mark>327</mark>
Arctic	Nunavut	Labrador Narrows	7487	69.71	-82.59		6	6	2.63	2.110	1500	100	151950	321
Vancouver Island Mainland	British Columbia	Boundary passage	344101	48.69	-123.27		3.5	3.5	1.53	0.334	4472	175	793760	265
Ungava	Quebec	Riviere Arnaud (Payne) Entrance	5352	59.98	-69.84		9	9	3.94	7.121	2300	9	32200	229
Bay of Fundy	New Brunswick	Clarks Ground	4340	44.59	-66.64		6	6	2.63	2.110	4092	22	102300	216
Vancouver Island Mainland	British Columbia	Current Passage 2	354401	50.39	-125.86		6	6	2.63	1.681	1502	80	123931	208
Vancouver Island Mainland	British Columbia	Weyton Passage	354601	50.59	-126.82		6	6	2.63	1.681	1535	75	118985	200
Ungava	Quebec	Koksoak Entrance	5376	58.52	-68.17		6	6	2.63	2.110	2000	40	92400	195
Hudson Strait	Nunavut	Cape Enouolik	7065	64.95	-78.33		5	5	2.19	1.221	5000	25	142500	174

Canada Ocean Energy Atlas Tidal Current Energy Resources

Region	Province	Site Name	Chart	Latitude	Longitude	Current Station	Max. Speed Flood (knots)	Max. Speed Ebb (knots)	Mean Max. Depth Ave. Speed (m/s)	Mean Power Density (kW/m2)	Passage Width (m)	Average Depth of Passage (m)	Flow Cross- sectional Area (m2)	Mean Potential Power (MW)
Pacific Mainland North	British Columbia	Nakwakto Rapids	355001	51.10	-127.50	6700	14	16	6.56	29.062	434	10	5643	164
Vancouver Island Mainland	British Columbia	Current Passage 1	354401	50.41	-125.87		5	5	2.19	0.973	1398	100	143331	139
Vancouver Island Mainland	British Columbia	Dent Rapids	354301	50.41	-125.21	5530	11	8	4.16	6.672	420	45	19955	133
Vancouver Island Mainland	British Columbia	South Pender Is	344101	48.72	-123.19		4	4	1.75	0.498	1985	100	203416	101
Bay of Fundy	New Brunswick	Devils Half Acre	4340	44.54	-66.69		6	6	2.63	2.110	2133	18	44793	95
Vancouver Island Mainland	British Columbia	Yaculta Rapids	354301	50.38	-125.15		10	10	4.38	7.782	539	20	12135	94
St. Lawrence River	Quebec	Passage de lle aux Coudre	1233	47.43	-70.43		5	6	2.41	1.625	1700	30	56100	91
Vancouver Island Mainland	British Columbia	Arran Rapids	354301	50.42	-125.14	5600	14	10	5.25	13.447	271	22	6629	89
Ungava	Quebec	Nakertok Narrows	5352	60.00	-70.27		9	9	3.94	7.121	1100	6	12100	86
Bay of Fundy	New Brunswick	Old Sow	4114	44.92	-66.99		6	6	2.63	2.110	625	60	39375	83
Arctic	Nunavut	Bellot Strait	7752	72.00	-94.48		8	8	3.50	5.001	1000	16	16400	82
Arctic	Nunavut	Cache Pt Channel	7710	68.62	-113.55		5	5	2.19	1.221	6000	10	62400	76
Vancouver Island Mainland	British Columbia	Secheldt Rapids 2	351403	49.74	-123.90	9999	14. 5	16	6.67	27.599	261	8	2739	76
Arctic	Nunavut	James Ross Strait	7083	66.69	-95.87		5	5	2.19	1.221	5900	10	61360	75
Bay of Fundy	New Brunswick	Head Harbour Passage 1	4114	44.95	-66.93		5	5	2.19	1.221	890	65	60520	74
Bay of Fundy	Nova Scotia	Northwest Ledge	4118	44.30	-66.42		4	4	1.75	0.625	5334	18	117348	73
Ungava	Quebec	Mikitok Narrows	5352	60.00	-70.27		9	9	3.94	7.121	700	8	9590	68
Arctic	Nunavut	Egg Island	7735	68.55	-97.40		7	7	3.06	3.351	750	25	19050	64
Pacific Mainland North	British Columbia	Otter Passage	3742	53.00	-129.73	8535	6	6	2.63	1.860	620	50	32860	61
Vancouver Island Mainland	British Columbia	Gillard Passage 1	354301	50.39	-125.16	5500	13	10	5.03	11.835	237	16	4393	52
Vancouver Island Mainland	British Columbia	Scott Channel	362501	50.79	-128.50		3	3	1.31	0.210	9970	22	244256	51
Vancouver Island Mainland	British Columbia	Active Pass	344201	48.86	-123.33	3000	8	8	3.50	3.984	561	20	12628	50
Bay of Fundy	New	Gran Manan Channel	4340	44.78	-66.86		2.5	2	0.98	0.111	5446	80	452018	50

Canada Ocean Energy Atlas Tidal Current Energy Resources

Region	Province	Site Name	Chart	Latitude	Longitude	Current Station	Max. Speed Flood (knots)	Max. Speed Ebb (knots)	Mean Max. Depth Ave. Speed (m/s)	Mean Power Density (kW/m2)	Passage Width (m)	Average Depth of Passage (m)	Flow Cross- sectional Area (m2)	Mean Potential Power (MW)
	Brunswick													
Arctic	Nunavut	Seahorse Point	7065	63.83	-80.13		5	5	2.19	1.221	2000	20	40800	50
Bay of Fundy	Nova Scotia	The Hospital	4242	43.44	-66.00		4	4	1.75	0.625	3600	18	79200	50
Gulf of St Lawrence	Newfoundland	Pointe Armour	4020	51.45	-56.86		4	5	1.97	0.890	1500	35	53700	48
Gulf of St Lawrence	Newfoundland	Forteau	4020	51.41	-56.95		4	5	1.97	0.890	1500	35	53700	48
Pacific Mainland North	British Columbia	Beaver Passage	3747	53.73	-130.37	8545	4	4	1.75	0.551	810	100	83430	46
Arctic	Nunavut	Nettilling Fiord	7051	66.72	-72.83		8	8	3.50	5.001	1700	5	9180	46
Vancouver Island Mainland	British Columbia	Nahwitti Bar 1	354901	50.89	-127.99		5.5	5.5	2.41	1.295	2993	9	34417	45
TOTAL														40697

Notes:

- 1. The tidal current site data shown in yellow in Table 7 and Table 8 were derived from tidal model results (see Section 4.3 and Section 2.3.
- 2. Some of the tidal current sites shown in Table 7 and Table 8 are located in close proximity to each other in the same tidal channel or tidal inlet (e.g. Seymour Narrows/Discovery Passage in BC and Smoky Narrows and Algernine Narrows in Leaf Bay, Ungava, PQ). The total extractable power available from such adjacent sites will depend on the specific characteristics of the driving tidal dynamics, site geometry and the energy extraction technology used.

Table 8: Canada Potential Tidal Current Power Sites (50 sites ranked by power density kW/m²)

Region	Province	Site Name	Chart	Latitude	Longitude	Current Station	Max. Speed Flood (knots)	Max. Speed Ebb (knots)	Mean Max. Depth Ave. Speed (m/s)	Mean Power Density (kW/m2)	Passage Width (m)	Average Depth of Passage (m)	Flow Cross- sectional Area (m2)	Mean Potential Power (MW)
Pacific Mainland North	British Columbia	Nakwakto Rapids	355001	51.10	-127.50	6700	14	16	6.56	29.062	434	10	5643	164
Vancouver Island Mainland	British Columbia	Secheldt Rapids 2	351403	49.74	-123.90	9999	14. 5	16	6.67	27.599	261	8	2739	76
Vancouver Island Mainland	British Columbia	Seymour Narrows	353902	50.13	-125.35	5000	16	14	6.56	<mark>18.160</mark>	<mark>769</mark>	<mark>41</mark>	<mark>33331</mark>	<mark>786</mark>
Ungava	Quebec	Smoky Narrows	5468	58.92	-69.27		12	12	5.25	16.880	1500	55	92400	1560
Bay of Fundy	New Brunswick	Reversing Falls	4141	45.26	-66.09		12	12	5.25	16.880	90	15	1746	29
Pacific Mainland North	British Columbia	Kildidt Narrows	393701	51.89	-128.11		12	12	5.25	14.880	75	2	375	6
Vancouver Island Mainland	British Columbia	Arran Rapids	354301	50.42	-125.14	5600	14	10	5.25	13.447	271	22	6629	89
Vancouver Island Mainland	British Columbia	Gillard Passage 1	354301	50.39	-125.16	5500	13	10	5.03	11.835	237	16	4393	52
Ungava	Quebec	Algernine Narrows	5468	58.79	-69.60		10	10	4.38	9.768	2000	59	130400	1274
Vancouver Island Mainland	British Columbia	Hole-in-the-Wall 1	353901	50.30	-125.21	5100	12	9.5	4.70	9.667	189	8	1985	19
Vancouver Island Mainland	British Columbia	Yaculta Rapids	354301	50.38	-125.15		10	10	4.38	7.782	539	20	12135	94
Ungava	Quebec	Riviere Arnaud (Payne) Entrance	5352	59.98	-69.84		9	9	3.94	7.121	2300	9	32200	229
Ungava	Quebec	Nakertok Narrows	5352	60.00	-70.27		9	9	3.94	7.121	1100	6	12100	86
Ungava	Quebec	Mikitok Narrows	5352	60.00	-70.27		9	9	3.94	7.121	700	8	9590	68
Atlantic South	Newfoundland	Placentia Gut	4841	47.25	-53.96		9	9	3.94	7.121	80	3	336	2
Vancouver Island Mainland	British Columbia	Dent Rapids	354301	50.41	-125.21	5530	11	8	4.16	6.672	420	45	19955	133
Pacific Mainland North	British Columbia	Draney Narrows`	393102	51.47	-127.56		9	9	3.94	6.277	139	8	1463	9
Pacific Mainland North	British Columbia	Hidden Inlet	399401	54.95	-130.33		9	9	3.94	6.277	142	3	781	5
Bay of Fundy	Nova Scotia	Minas Basin	4010	45.35	-64.40		7.5	7.5	3.28	<mark>6.036</mark>	<mark>4376</mark>	<mark>56</mark>	<mark>274113</mark>	<mark>1903</mark>
Vancouver Island Mainland	British Columbia	Upper rapids 2	353701	50.31	-125.23	5030	9	9	3.94	5.673	242	18	4955	28
Vancouver Island Mainland	British Columbia	Gillard Passage 2	354301	50.40	-125.15	5500	10	8	3.94	5.673	393	10	4916	28

Canada Ocean Energy Atlas Tidal Current Energy Resources

Region	Province	Site Name	Chart	Latitude	Longitude	Current Station	Max. Speed Flood (knots)	Max. Speed Ebb (knots)	Mean Max. Depth Ave. Speed (m/s)	Mean Power Density (kW/m2)	Passage Width (m)	Average Depth of Passage (m)	Flow Cross- sectional Area (m2)	Mean Potential Power (MW)
Vancouver Island Mainland	British Columbia	Gillard Passage 3	354301	50.39	-125.16	5500	10	8	3.94	5.673	92	5	686	4
Pacific Mainland North	British Columbia	Outer Narrows	355001	51.09	-127.63		7	10	3.72	5.288	210	17	4206	22
Vancouver Island Mainland	British Columbia	Gabriola Pass.	347501	49.13	-123.70	3300	8.5	9	3.83	5.213	137	8	1435	7
Ungava	Quebec	Riviere George Entrance	5335	58.76	-66.12		8	8	3.50	5.001	3000	35	125100	626
Arctic	Nunavut	Bellot Strait	7752	72.00	-94.48		8	8	3.50	5.001	1000	16	16400	82
Arctic	Nunavut	Nettilling Fiord	7051	66.72	-72.83		8	8	3.50	5.001	1700	5	9180	46
Vancouver Island Mainland	British Columbia	Porlier Pass	347303	49.01	-123.59	3100	9	8	3.72	4.779	339	15	5926	28
Vancouver Island Mainland	British Columbia	Quatsino Narrows	368106	50.55	-127.56	9200	9	8	3.72	4.779	207	18	4240	20
Vancouver Island Mainland	British Columbia	Dodds Narrows	347501	49.14	-123.82	4000	9	8	3.72	4.779	91	9	1047	5
Pacific Mainland North	British Columbia	Hawkins Narrows	372201	53.41	-129.42		8	8	3.50	4.409	55	3	301	1
St. Lawrence River	Quebec	Travers de Saint-Roch	1233	47.36	-70.26		7.5	7.5	3.28	4.121	500	15	9000	37
Vancouver Island Mainland	British Columbia	Active Pass	344201	48.86	-123.33	3000	8	8	3.50	3.984	561	20	12628	50
Vancouver Island Mainland	British Columbia	Nitinat Narrows	364703	48.67	-124.85		8	8	3.50	3.984	61	20	1376	5
Vancouver Island Mainland	British Columbia	Discovery Pass. S.	353901	50.00	-125.21		7	7	3.06	<mark>3.676</mark>	<mark>1459</mark>	<mark>42</mark>	<mark>65626</mark>	<mark>327</mark>
Hudson Strait	Nunavut	Lacy/Lawson Islands	5456	60.60	-64.62		7	7	3.06	3.351	2750	80	223575	749
Arctic	Nunavut	Egg Island	7735	68.55	-97.40		7	7	3.06	3.351	750	25	19050	64
Bay of Fundy	Nova Scotia	Petit Passage	4118	44.39	-66.21		7	7	3.06	3.351	335	18	7035	24
Ungava	Quebec	McLean Strait	-	60.35	-64.63		7	7	3.06	3.351	200	8	2200	7
Hudson Strait	Nunavut	McLelan Strait	4773	60.35	-64.63		7	7	3.06	3.351	200	8	1880	6
Bay of Fundy	New Brunswick	Lubec Narrows	4114	44.86	-66.98		6	8	3.06	3.351	180	3	1080	4
Ungava	Quebec	Koksoak Narrows	5376	58.18	-68.32		5	8.5	2.95	3.004	400	30	14400	43
Pacific Mainland North	British Columbia	Porcher Narrows	3761	53.90	-130.47	8551	7	7	3.06	2.954	120	10	1560	5
Arctic	Nunavut	Wager Bay Narrows	5440	65.31	-87.74		6	7	2.84	2.683	3600		1440	4
Vancouver Island	British	Green Pt Rap. 1	354301	50.44	-125.51		7	7	3.06	2.669	440	25	12093	32

Canada Ocean Energy Atlas Tidal Current Energy Resources

Region	Province	Site Name	Chart	Latitude	Longitude	Current Station	Max. Speed Flood (knots)	Max. Speed Ebb (knots)	Mean Max. Depth Ave. Speed (m/s)	Mean Power Density (kW/m2)	Passage Width (m)	Average Depth of Passage (m)	Flow Cross- sectional Area (m2)	Mean Potential Power (MW)
Mainland	Columbia													
Vancouver Island Mainland	British Columbia	Whirlpool Rapids	354401	50.46	-125.76		7	7	3.06	2.669	321	28	9804	26
Vancouver Island Mainland	British Columbia	Lower Rapids 1	353701	50.31	-125.26		7	7	3.06	2.669	371	8	3891	10
Vancouver Island Mainland	British Columbia	Race Passage	344001	48.31	-123.54	1200	6	7	2.84	2.137	884	20	19885	42
Vancouver Island Mainland	British Columbia	Stuart Narrows	354701	50.90	-126.94		6	7	2.84	2.137	261	7	2478	5
Hudson Strait	Nunavut	Gray Strait	5456	60.54	-64.69		6	6	2.63	2.110	6000	550	3307800	6979
Arctic	Nunavut	Labrador Narrows	7487	69.71	-82.59		6	6	2.63	2.110	1500	100	151950	321
Bay of Fundy	New Brunswick	Clarks Ground	4340	44.59	-66.64		6	6	2.63	2.110	4092	22	102300	216
TOTAL														16441

4.2 TIDAL RESOURCE MAPS

Figure 9 shows a map (in Manifold GIS) of the Canadian tidal current sites ranked by potential mean power. Figure 10, Figure 11 and Figure 12 show detail areas of this map, namely: Pacific Coast, Hudson's Strait/Ungava Bay and the Atlantic Coast respectively. These latter three maps are at approximately the same scale.

Figure 9: Canada Potential Tidal Current Resource Sites

Figure 10: Potential Tidal Current Resource Sites - Pacific Coast

Figure 11: Potential Tidal Current Resource Sites - Hudson's Strait and Ungava Bay

Figure 12: Potential Tidal Current Resource Sites - Atlantic Coast

4.3 POTENTIAL TIDAL CURRENT ENERGY DENSITY MAPS

Figure 13 through Figure 16 show maps of power density in units W/m for the Pacific Coast, Hudson's Strait, Atlantic Coast and Bay of Fundy North respectively. The power density colour scales for all four maps are similar. These maps were developed from tidal model results.

Figure 14: Power Density - Hudson's Strait

28

Figure 16: Power Density - Bay of Fundy North

5. SUMMARY AND RECOMMENDATIONS FOR FURTHER STUDIES

5.1 SUMMARY

As detailed in this summary report, Phase 1 of the Canada Ocean Energy Atlas project has identified a significant tidal current energy resource in Canada. The potential tidal energy in this country is estimated to exceed a mean power of 42,000 MW or about 365 TW.hours/year. To put this figure in perspective, this represents over 70% of Canada's present annual electrical power consumption.

The estimated Canadian tidal current energy resource is an indication of the **potential** energy available, **not** the actual power that can be exploited. Environmental, technological, climate and economic factors will determine what proportion of the potential can be utilised.

5.2 RECOMMENDATIONS FOR FUTURE STUDIES

5.2.1 Modelling

This preliminary study has identified a number of major tidal current power resources across Canada. It is recommended that near-term modelling studies should concentrate on three specific areas.

- Minas Basin, Nova Scotia
- Georgia and Johnstone Straits, British Columbia.
- Hudson's Strait and Ungava Bay

The objective of these modelling studies should be to improve the definition of the tidal current resources available, to provide estimates of extractable energy and to make an initial evaluation of the environmental impact of tidal energy extraction.

5.2.2 Mapping

A principal objective of the Canada Ocean Energy Atlas Project is to make information on Ocean Energy readily available to the Public. As it is clear that Ocean Energy data is primarily geographically-based, the value of a Geographic Information Systems (GIS) for disseminating this information is clear. Over the course of this project, Manifold GIS (<u>www.manifold.net</u>) has been used with success by Triton Consultants. Manifold provides an ideal user-friendly and economic platform for displaying and interrogating geographical-oriented data. GIS packages (such as Manifold) can be easily implemented as web-based applications and this would appear to be the best way to make Canadian Ocean Energy data available to the Public.

It is recommended that a web-based GIS system be implemented during the next phases of the Ocean Energy Atlas Project.

6. REFERENCES

Garrett, C. & Cummins, P., 2004. Generating power from tidal currents. J. Waterway Port Coastal Ocean Eng 130 114-118

Garrett, C. & Cummins, P., 2005. The power potential of tidal currents in channels. Proc. R. Soc. A (2005) 461, 2563-2572

Triton Consultants Ltd., 2002. Green energy study for British Columbia. Phase 2: Mainland.

APPENDICES

APPENDIX A CEAPack Description

CEAPACK

<u>C</u>oastal <u>E</u>ngineering <u>A</u>nalysis <u>Pack</u>age

OVERVIEW

CEAPack is a unified analysis and design toolbox useful to the practicing coastal engineering design consultant. It contains tools for tackling problems as numerically intensive as spectral wave hindcasting and the assessment of the dynamic behaviour of floating bodies, to simple but laborious tasks such as computing pile interference and rubble-mound breakwater volume.

The modules within CEAPack are implemented upon Microsoft Windows .NET framework with a standard user interface and data conventions common to all modules. This standardization frees the user from focusing on data manipulation and allows him to concentrate on the engineering issues.

CEAPack is presently configured with over 30 routines implemented in the following four modules which are called from the CEAPack Launcher interface shown below:

- **CEATools** Calculates scientific and engineering properties indirectly related to coastal engineering design (e.g., tidal prediction, fluid properties, simple wave generation/propagation, sediment transport)
- **CEADesign** Design aids directly related to coastal engineering design (e.g., breakwater armour size determination, submarine pipeline stability, floating body stability)
- **CEAData** 1D, 2D and 3D constant and timevarying dataset conversion, analysis, and visualization (e.g., finite element grid generation, statistical analysis, animation)
- Models A number of individual programs for simulating coastal processes. Many of these are based on existing public-domain or research code that have been modified to fit the CEAPack framework.

CEATools

CEATools contains routines for completing scientific and engineering calculations such as:

- Tidal harmonic analysis and prediction
- Steady wind wave generation
- Monochromatic and spectral wave transformation
- Wave height distribution
- Propeller wash current generation
- Initiation of sediment transport

CEADesign

CEADesign contains routines to assist in the design of rubble-mound breakwaters, caisson structures, dredged channels, floating structures, piled structures, pipelines and ports. Design parameters such as minimum structure dimensions, applied forces, and structure response and efficiency are calculated.

CEAData

CEAData is based on the National Center for Supercomputing Applications Hierarchical Data Format (HDF) with invented conventions for the storage of virtually any type of structured or unstructured mesh and associated scalar and vector time-varying data.

CEAData contains routines for importing data, performing correlation and event analyses, visualizing data and exporting to other formats. In addition, several simple models are included such as 1D wave generation, sediment transport calculation, tide prediction, etc.

Tamadan R. Tamadan R.					Wind Vector Comparison			
	Scatte Diogram Paramoter Scatte Diogram Type © Wave Hegdr vs Peak Penid Wave Hegdr vs Denkard Direction Peak Penid vs Domnard Direction Significant Wave Hegdr vs Time		Analysis Type C Observations C	OK. Cancel		+++		
	Wave Hight Drs Wave Perce C 01m C 05s C 02m C 10s C 18(0.05m) C 20s C 05m C 10m C 20m C 20m	Wave Period Bins C 0.5 s C 10 s C 20 s	Dominant Direction Bine Single Ein Point Company 16 Point Company 15 Degree Bine	Time Bins G. Month C. Calender Year				

Models

CEAPack contains GUI interfaces and/or preand post-processors to several industry-standard numerical models including the following:

• SMP (US Navy)

vessel motion analysis for single free-floating vessels of standard shape

• DynMoor (Triton)

- dynamic mooring analysis model based on SMP results

• AQWA (Century Dynamics)

- vessel motion and mooring analysis for multiple floating and fixed bodies of arbitrary shape

• WaveHind (Triton)

- 1D wave generation model

• SWAN (Delft University)

- 2D shallow water wave generation and propagation model

• WaveWatch III (US NOAA)

- 2D coastal ocean water wave generation and propagation model

• REFDIF (University of Delaware)

- 2D refraction-diffraction phase-averaging short wave propagation model

• FUNWAVE (University of Delaware)

- 2D refraction-diffraction phase-resolving short wave propagation model

• Tide2D (Roy Walters)

- 2D harmonic tidal model

• RICOM (Roy Walters)

- 2D/3D semi-implicit semi-Lagrangian hydrodynamic model

- SEDX (Public Works Canada)
 - alongshore sediment transport calculator
- SBeach and Genesis (US Army)
 - 2D vertical and 2D horizontal shoreline evolution models

Supported Data Formats

CEAPack was designed to leverage the many advanced features that already exist in various industrystandard commercial software packages. In addition to those formats supported implicitly in the models interfaces described previously, a wide variety of import and/ or export file format options are supported including:

- Standard
 - ASCII format (DAT, CSV)
 - Binary format (XLS, PDF, MDF, DBF)
 - Images formats (BMP, EMF, GIF, ICO, JPG, PNG, TIF, WMF)
 - Animation formats (AVI)
- Data Visualization
 - Golden Software Surfer Grid format (GRD)
 - TecPlot format (DAT, PLT)
- Grid Generation
 - TriGrid, Institute of Ocean Sci. format (NGH)
- Geographic Information Systems
 - ESRI Shape File format (SHP)
 - Manifold Project format (MAP)
 - MapGen format (DAT)
 - Engineering and Scientific
 - AutoDesk AutoCAD formats (DXF, SCR)
 - Danish Hydraulic Institute Litpack formats
 - Canadian Marine Environmental Data Service formats
 - Meteorological Service of Canada formats
 - US NOAA meteorological formats
 - US NOAA raster nautical chart format (BSB)
 - World Meteorological Organization Gridded Binary format (GRB)
 - Unidata NetCDF format (NC, CDF)
 - US National Center for Supercomputing Applications HDF5 format (H5)
 - Canadian Hydrographic Service water level, current and bathymetry formats
 - Geodetic Survey Division, Natural Resources Canada format (GHOST)
 - various meteorological and oceanographic instruments from vendors such as InterOcean, Sontek, Seabird, RD Instruments

TRITON CONSULTANTS LTD.

3530 West 43rd Avenue, Vancouver British Columbia V6N 3J9 CANADA Telephone: 604 263-3500 Fax: 604 676-2252 Website: www.triton.ca Email: info@triton.ca

APPENDIX B Hydrodynamic Model Tide 2D Description

Technical Data Sheet HYDRODYNAMIC MODELLING

Triton maintains a suite of finite element programs for the assessment of free surface flow in two and three dimensions. All programs were developed by Dr. Roy Walters formerly of the US Geological Survey. The program modules include:

Tide2D	Two-dimensional frequency domain solution of the non-linear shallow water equations	WEq	Two dimensional time domain solution of the non-linear shallow water equations
Tide3D	Three-dimensional frequency	XTide	Two dimensional frequency domain

- domain solution of the non-linear shallow water equations
- Tide Two dimensional frequency domain solution of the non-linear shallow water and advection-dispersion equations

Depending on the application, either a frequency domain (harmonic) or time domain (timestepping) solution may be more appropriate. All modules use a finite element discretisation in space and a harmonic expansion or predictor-corrector approach in time (Walters, 1987). The shallow water equations solve the two or three-dimensional continuity and momentum equations using standard Galerkin techniques. The spatial domain is discretised by defining a set of twodimensional triangular elements in the horizontal plane, and a sigma coordinate system in the vertical for the third dimension if required.

A typical analysis sequence following the finite element grid generation stage (using the commercially-available TriGrid package) begins with the computationally efficient two-dimesional frequency domain analysis (Tide2D) of steady conditions and harmonic driving components. Short (two to three week) time segments of particular interest are examined using the more-computationally intensive and detailled two-dimensional timestepping solution (WEq). Depending on the importance of three dimensional effects (e.g., salinity, temperature, freshwater influx), Tide3D can be used to with marginal computational penalties over Tide2D. XTide is used to quickly assess dispersion of conservative pollutants.